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Abstract
Background and aims – Endemism may be defined according to the time of origin of taxa. Neo-endemics refer to 
relatively recent species that have not dispersed outside their ancestral areas. In contrast, paleo-endemics refer to 
species of ancient origins, which are currently geographically restricted but probably were more widespread in the 
past. Geographically, endemism areas may also be based on the co-occurrence of more than one species. We aimed to 
qualitatively identify the neo-endemism and paleo-endemism of endemic Cactaceae of the Tehuacán-Cuicatlán Valley, 
as well as to quantitatively assess paleo- and neo-endemics areas. 
Material and methods – Using a dated molecular phylogeny of endemic Cactaceae, we defined paleo- and neo-endemics 
using an arbitrary boundary of 2.6 million years ago; we also assessed the significance of concentrations of these species 
using a categorical analysis of paleo- and neo-endemism. 
Key results – Our results showed that most endemic Cactaceae in the Tehuacán-Cuicatlán Valley arose throughout the 
Pleistocene, while categorical analysis indicated localised mixed- and super-endemism (including both paleo- and neo-
endemics) areas. 
Conclusion – We suggest that paleo- and neo-endemics, as well as localised mixed-endemism areas, may have originated 
due to a probable high climatic stability in the Tehuacán-Cuicatlán Valley, which in addition to topographically rugged 
and ecologically complex zones (e.g. ecotones, isolated habitat patches) may have allowed it to function as a refuge 
throughout Pleistocene climatic changes, mainly promoting the speciation of neo-endemics, as well as the persistence of 
relatively few paleo-endemics.

Keywords
arid lands, CANAPE, endemism, North America, Pleistocene, speciation

INTRODUCTION

Endemism refers to a spatiotemporal character shown by 
each taxon or biotic group with a restricted geographic 
distribution (Anderson 1994). Although this term has 

received several different meanings (see Anderson 1994; 
Peterson and Watson 1998; Noguera-Urbano et al. 2017), 
two different levels have been usually distinguished: 
a spatial level, in which an area is categorised as an 
endemism area based on the occurrence of more than 
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one species with rather restricted and largely congruent 
ranges (Haffer 1981; Anderson 1994); and a temporal 
level, in which endemic taxa can be classified according 
to their inferred evolutionary age (Stebbins 1942, 1974; 
Stebbins and Major 1965; Major 1988). 

Spatial endemism responds to ecological, evolutionary, 
geographical, and climatic factors, all of which influence 
processes promoting the evolution of endemism areas 
(Stebbins and Major 1965; Anderson 1994; Linder 
2008; Harrison and Noss 2017). Endemism areas have 
been generally attributed to historical processes, such as 
Pleistocene refugia (Hewitt 1996; Tzedakis et al. 2002) or 
major geological events (Jetz et al. 2004). Thus, endemism 
areas may result from either long-term climatic stability, 
which potentially reduces extinction events, or geographic 
complexity, which may promote the development 
of heterogeneous habitats that may enhance or limit 
biotic dispersal (Fine 2015; Harrison and Noss 2017). 
Regarding temporal endemism, two categories may be 
defined according to the time of origin: paleo-endemics 
and neo-endemics (Stebbins and Major 1965; Prentice 
1976; Major 1988). Paleo-endemics refer to ancient and 
geographically restricted taxa for which current ranges 
represent remnants of formerly widespread distributions 
(Malik 2016). In contrast, neo-endemics refer to taxa of 
relatively recent origin that have not dispersed beyond 
their ancestral distributional range (Prentice 1976). The 
boundary between the recognition of paleoendemics and 
neo-endemics has not been clearly established. However, 
some authors locate the boundary between the Miocene/
Pliocene transition (5–6 million years ago [Mya]; Fjeldså 
and Lovett 1997). Da Silva and Bates (2002) situate the 
boundary on the Pliocene/Pleistocene transition; thus, 
paleo-endemics are ancient lineages (> 2.6 Mya), while 
neo-endemics are recent lineages mostly originated during 
the Pleistocene. Areas with significant concentrations of 
paleo- or neo-endemic taxa are referred to as centres of 
paleo-endemism or neo-endemism, respectively (Mishler 
et al. 2014). Centres of paleo-endemism acted as places 
for survival (‘species museums’), where taxa persisted 
over time. In contrast, centres of neo-endemism (‘species 
cradles’) may have played a major role in relatively recent 
speciation and evolutionary events (Stenseth 1984; 
Jablonski 1993; Gaston and Blackburn 1996).

Early studies on assemblages of paleo-endemics and 
neo-endemics were carried out in regions previously 
recognised as refugia, such as California (Stebbins and 
Major 1965; Kraft et al. 2010), the tropical Andes (Fjeldså 
1995), tropical Africa (Fjeldså and Lovett 1997), the 
Mediterranean Basin (Verlaque et al. 1997), the South 
African Cape region (Verboom et al. 2009), and southern 
China (López-Pujol et al. 2011). Recent studies have 
applied a phylogenetic approach and novel phylogenetic 
tools, including new metrics, such as relative phylogenetic 
diversity and relative phylogenetic endemism, and new 
methods, such as categorical analysis of paleo- and neo-
endemism (CANAPE: Rosauer et al. 2009; Mishler et al. 
2014). These analyses have located potential centres of 

endemism and classified them based on branch lengths 
in the phylogenetic tree of inhabiting taxa, allowing for a 
quantitative distinction among centres of neo- and paleo-
endemism (Mishler et al. 2014). These novel methods 
have been used in analyses including community 
assembly, evolutionary biogeography, bioregionalism, 
and conservation studies in different geographic regions, 
such as Australia (Mishler et al. 2014; Schmidt‐Lebuhn 
et al. 2015), California (Thornhill et al. 2017), New 
Zealand (Heenan et al. 2017), Chile (Scherson et al. 2017), 
Mexico (Sosa et al. 2018), and North America (Mishler 
et al. 2020). In Mexico, endemism areas of vascular 
plants were recently assessed by Sosa et al. (2018) using 
a phylogenetic perspective on the distributional range 
of both paleo- and neo-endemic species. Their findings 
identified paleo-endemism areas (e.g. in Baja California, 
the Sonoran Desert, the northern Chihuahuan Desert, the 
Sierra Madre Oriental, the western Neovolcanic Belt, the 
Tehuacán-Cuicatlán Valley (TCV), and the Balsas Basin), 
neo-endemism areas (e.g. in the Sonoran Desert), and 
super-endemism areas concentrating both paleo- and 
neo-endemic taxa (e.g. in the northern Mexican Plateau 
and Sierra Madre de Chiapas).

The isolated TCV represents a complex physiographic 
mosaic of Cenozoic origin (Dávalos-Álvarez et al. 2007) 
in which internal minor valleys are separated by mountain 
chains, therefore promoting a very heterogeneous 
environment. This small area bears the greatest plant 
diversity of the Mexican arid regions, harbouring more 
than 3000 species, representing approximately 13% of the 
estimated flora of Mexico (Casas et al. 2016; Ulloa-Ulloa 
et al. 2017; Pérez-Valladares et al. 2019). Most of the flora 
in the TCV have Neotropical biogeographic affinities. 
However, some of Mexico’s arid and semi-arid plant 
communities are of Nearctic origin (Rzedowski 1973; 
Villaseñor et al. 1990). Additionally, a Mexican element 
has been recognised and includes 13% of the total plant 
diversity in the valley (Villaseñor et al. 1990; Méndez-
Larios et al. 2005). Late Pleistocene climatic changes 
may have largely influenced the biotic composition of 
the present flora of the region, suggesting that local plant 
communities are of recent origin (Valiente-Banuet et 
al. 2009). The valley is thus a complex biotic mosaic in 
which up to 21 plant communities have been identified 
(Pérez-Valladares et al. 2019): xerophytic communities 
dominate the north-western part, while the south-eastern 
portion is dominated by warmer climates, favouring the 
development of more mesic communities (García 1998; 
Valiente-Banuet et al. 2009; Pérez-Valladares et al. 2019).

Cactaceae is nearly endemic to the Neotropics, and 
about 1,847 species have been recognised. The main 
centre of diversification for this family is located in 
Mexico, with a total of 670 species, 519 of which are 
endemic to the country (Ulloa-Ulloa et al. 2017). The 
highest concentrations of Cactaceae in the country 
occur in arid and semi-arid regions, tropical dry forests, 
and scrubland vegetation (Mutke et al. 2015) in the 
Chihuahuan and the Sonoran Deserts, and the Tehuacán-
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Cuicatlán Valley (Arias-Montes et al. 2012). Significantly, 
the relatively small area of the TCV harbours the highest 
diversity of Cactaceae in Mexico (Valiente-Banuet et al. 
2009), in which most plant communities are dominated 
by endemic species of columnar cacti, highlighting this 
small area as an important diversity centre for the family 
(Valiente-Banuet et al. 2000; Mutke et al. 2015; Pérez-
Valladares et al. 2019). At least 86 Cactaceae species occur 
in the TCV (Arias-Montes et al. 1997, 2012), such as the 
“viejito” (Cephalocereus columna-trajani), the “tetetzos” or 
“teteches” (Cephalocereus macrocephalus and C. tetetzo), 
and the “chendes” (Polaskia chende) (Fig. 1).

Despite being a Cactaceae hotspot, including both 
the highest species richness and high levels of endemism 
(Méndez-Larios et al. 2004; Arias-Montes et al. 2012), 
no studies address the causes of this high diversity in the 
TCV using a phylogenetic approach. The high diversity 
and endemism of Cactaceae (Valiente-Banuet et al. 2009) 
in the isolated TCV suggests that diversification may have 
occurred through several pulses during the Pleistocene, 

which, in addition to the complex topography, favoured 
both the persistence and the speciation in this group. 
We, therefore, expected the TCV to be an area in which 
both neo- and paleo-endemic species may be found. We 
also expected to locate mixed-endemism areas either in 
topographically rugged or ecologically complex zones 
(e.g. ecotones, isolated habitat patches). We here raised 
the following questions to approach the study of the 
endemism of Cactaceae in this region: Is the TCV a place 
for the persistence of ancient taxa (paleo-endemics) or 
promoting the speciation of new taxa (neo-endemics)? 
Are Pleistocene climate changes and isolation drivers 
of origin and diversification of endemic lineages in the 
TCV? To answer these questions, we first conducted a 
qualitative assessment of the paleo- and neo-endemism in 
Cactaceae in the TCV. Then, we undertook a quantitative 
assessment to understand if the areas in which paleo- and 
neo-endemic species are distributed may be considered 
significant endemism areas. The conjunction of both 
qualitative analyses on species and quantitative analyses 

Figure 1. Some species of Cactaceae endemic to the Tehuacán-Cuicatlán Valley. A. Cephalocereus columna-trajani. B. Coryphantha 
pallida. C. Echinocereus acanthosetus. D. Ferocactus robustus. E. Lemaireocereus hollianus. F. Mammillaria huitzilopochtli. G. Opuntia 
tehuacana. H. Polaskia chende. I. Thelocactus tepelmemensis. The photos are used under a CC BY license from Naturalista (https://
www.naturalista.mx/). Photo credits go to Chris Fluit (A, 301214920), Leticia Soriano Flores (B, 3927206), Carlos Martorell (C, 
9640218), Iván Hernández (D, 56592615), Alicia Mastretta Yanes (E, 192470225), Socorro García Méndez (F, 132245025), Leticia 
Soriano Flores (G, 88218728), Joseph Scheer (H, 174475303), Leticia Soriano Flores (I, 26464348). The letter inside the parenthesis 
indicates the figure, and the number is the photo identifier from Naturalista.

https://www.naturalista.mx/
https://www.naturalista.mx/
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on areas may improve the understanding of the evolution 
of the endemism in the isolated TCV.

MATERIAL AND METHODS

Study area 

The TCV covers nearly 10,000 km2 in southeastern 
Puebla and north-western Oaxaca, in southern Mexico 
(Fig. 2). Most of the valley is currently protected in a 
biosphere reserve (Dávila et al. 2002). This small area is 
characterised by a high environmental heterogeneity, 
with warm, semi-warm, and temperate climates. The 
climate is predominantly dry, with annual precipitation 
ranging from 400 to 500 mm and temperatures averaging 
22–24°C (García 1998). The TCV is formed by several 
minor valleys and mountain chains with elevations from 
70 to 3300 m a.s.l. (Pérez-Valladares et al. 2019).

List of the endemic species and spatial data

In order to address the study of paleo- and neo-endemism 
in the TCV, we first generated a list of the Cactaceae 
species endemic to the TCV by reviewing the specialised 
literature, including the Flora of the Tehuacán-Cuicatlán 
Valley of the Instituto de Biología, UNAM (Arias-Montes 

et al. 2012), as well as other floristic, taxonomic, and 
phytogeographic studies (e.g. Dávila et al. 1995, 2002; 
Méndez-Larios et al. 2004; Villaseñor 2016).

All records for Cactaceae species endemic to TCV 
were downloaded from the Portal de Datos Abiertos of 
the UNAM (https://datosabiertos.unam.mx/) and the 
Global Biodiversity Information Facility (GBIF.org 2023a, 
2023b). Only collected specimens preserved in scientific 
herbaria were used. To clean the data, we followed the 
recommendations of Chapman (2005) and Castillo et 
al. (2014); all of the records were screened to exclude 
those with obvious errors in georeferencing data (i.e. 
data quality issues, data outside the study area or with 
coordinates occurring in the ocean). Records without 
coordinates were georeferenced following Chapman and 
Wieczorek (2020), taken as reference the description of 
the collection locality registered in the online databases. 
For specimens without such description, we consulted 
Arias-Montes et al. (2012). The geographic distribution of 
the endemic species was visualised using QGIS v.3.22.3 
(QGIS Development Team 2022). We verified all species’ 
names by using Plants of the World Online (POWO 
2023), which allowed us to remove both synonyms and 
non-accepted names. 

To assess paleo- and neo-endemism patterns in 
the TCV, we analysed the endemism at two levels: 1) a 
temporal level, using a time-calibrated phylogeny, and 

Figure 2. Map of the Tehuacán-Cuicatlán Valley. The colour-filled cells show the centres of endemism identified by CANAPE.

https://datosabiertos.unam.mx/
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2) a spatial level, using a spatial phylogenetic analysis 
(CANAPE). 

Paleo- and neo-endemism at the temporal level

We considered paleo-endemics as ancient lineages (> 2.6 
Mya) and neo-endemics as recent lineages (≤ 2.6 Mya), 
following Da Silva and Bates 2002. This criterion was used 
because most geomorphological processes and climatic 
events in the TCV probably occurred during the Pleistocene 
(Cornejo-Romero et al. 2017), suggesting that this period 
was significant for the evolution and composition of the 
valley flora (Brunet 1967; Dávalos-Álvarez et al. 2007). 
We downloaded 166 DNA sequences from GenBank 
(https://www.ncbi.nlm.nih.gov/genbank/; Supplementary 
material 1) corresponding to the chloroplast region 
trnK-matK. We included sequences from 21 of the 27 
Cactaceae species recognised as endemics to the TCV 
and sequences of 145 non-endemic species from different 
genera as outgroups (e.g. Acanthocalycium, Browningia, 
Cereus, Epiphyllum, Lophophora, Melocactus, Pachycereus, 
Pereskia, and Stenocactus) (Supplementary material 1), 
including as many outgroup species as possible is desirable 
for estimating more accurate branch lengths, as required 
in branch length-based methods. Sequences were edited 
using BioEdit v.7.1.5.0 (Hall 1999), and alignments were 
conducted in Muscle v.3.6 (Edgar 2004) using default 
parameters or manual adjustment when necessary. Then, 
we estimated and selected the best nucleotide substitution 
model for each locus via the Akaike information criterion 
using MEGA v.7.0.26 (Kumar et al. 2016).

Phylogeny and divergence time estimates for 
Cactaceae species were inferred on the trnK-matK matrix 
using Bayesian inference methods in BEAST v.2.1.2 
(Bouckaert et al. 2014). We relied on calibrations derived 
from a comprehensive molecular time-calibrated tree of 
Cactaceae, which allowed us to constrain the stem node 
age at 32.11 Mya (Hernández-Hernández et al. 2014). 
Additionally, the node age for Cactoideae was constrained 
at 17.15 Mya, the Opuntieae node at 9.04 Mya, and the 
node Core Mamilloid at 8.62 Mya. An uncorrelated 
relaxed lognormal clock was implemented, and the 
birth-death model was selected for the species tree prior 
(Bouckaert et al. 2014). We ran two independent runs, 
each consisting of four Markov chain Monte Carlo and 
30 million generations, with parameters sampled every 
1000 generations. Then, we used Tracer v.1.5 (Rambaut 
et al. 2018) to confirm chain convergence and to estimate 
effective sample sizes (> 200) for all model parameters. The 
two independent runs were combined in LogCombiner 
v.2.1.2 (Bouckaert et al. 2014), with 25% of the initial 
trees discarded as burn-in. Finally, TreeAnnotator v.2.1.2 
(Bouckaert et al. 2014) was used to summarise the 
information on the trees and to derive a maximum clade 
credibility (MCC) tree, which was visualised and edited 
using FigTree v.1.4.2 (Rambaut 2014).

Paleo- and neo-endemism at the spatial level

Paleo- and neo-endemism was spatially assessed using 
CANAPE (Mishler et al. 2014), as implemented in the R 
package canaper v.1.0 (Nitta et al. 2023). This approach 
uses inferred branch lengths from a phylogenetic tree. 
Therefore, paleo- and neo-endemism areas are interpreted 
as those containing a significantly high concentration 
of range-restricted species showing either long or short 
branches. Thus, paleo-endemic areas are characterised 
by non-random concentrations of species with long 
branch lengths, while neo-endemic areas include non-
random concentrations of species with short branch 
lengths (Mishler et al. 2014; Thornhill et al. 2016). These 
areas act as “cradles” and “museums” of biodiversity, 
respectively. We applied CANAPE to our MCC tree; 
the species in our dataset that were absent from the tree 
were added using the R package phytools v. 2.0 (Revell 
2012). We overlapped a grid of 15 minutes of longitude 
and latitude on the TCV, and each quadrant was used 
as a geographic unit from which we calculated both the 
phylogenetic endemism (PE, Rosauer et al. 2009) and 
the relative phylogenetic endemism (RPE, Mishler et al. 
2014). To assess the statistical significance of PE and RPE, 
we compared the observed PE and RPE values of each 
grid cell to 999 values generated from a null distribution 
that randomises the terminals in the phylogeny while 
holding constant the total taxa per cell and the total cells 
per taxon. P-values were estimated from a two-tailed 
distribution value, which allowed us to identify areas 
with higher (> 0.9) or lower (< 0.1) PE or RPE than the 
null distribution. Higher or lower PE/RPE values were 
compared to the null distribution in grid cells, indicating 
paleo- or neo-endemism areas, respectively (Mishler et 
al. 2014). In addition to identifying endemic centres and 
classifying them into different categories, CANAPE is also 
used to support suggestions for biodiversity conservation 
(Wang et al. 2022; Cai et al. 2023).

RESULTS

List of the endemic species and spatial data

Our revision based on specialised literature generated a 
list of 27 Cactaceae species endemic to the TCV (Table 
1), which were grouped into the following clades based 
on Hernández‐Hernández et al. (2014): the Cacteae clade, 
including only Thelocactus (1 sp.); the Core Mammilloid 
clade grouping Mammillaria (13 spp.) and Coryphantha 
(1 sp.); the Core Pachycereeae clade, which groups 
Cephalocereus (4 sp.), Echinocereus (1 sp.), Lemaireocereus 
(1 sp.), and Polaskia (1 sp.); the Ferocactus clade, 
including only Ferocactus (3 spp.); and the Opuntiodeae 
clade, including only Opuntia (2 spp.). Mammillaria is 
the largest genus in the TCV, with 13 endemic species 
comprising 48% of the total endemic Cactaceae species. 
Additional genera with high numbers of endemics are 

https://www.ncbi.nlm.nih.gov/genbank/
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Table 1. Estimated divergence times for the Cactaceae species endemic to the Tehuacán-Cuicatlán Valley. Species are classified as 
paleo- or neo-endemics based on the criterion of Da Silva and Bates (2002).

Species Divergence time (mya) Paleo- or neo-endemic
Cephalocereus columna-trajani 0.86 (0.16–1.92) Neo-endemic
Cephalocereus fulviceps 0.61 (0.00–1.99) Neo-endemic
Cephalocereus macrocephalus 0.61 (0.00–1.99) Neo-endemic
Cephalocereus tetetzo 0.86 (0.28–2.37) Neo-endemic
Coryphantha pallida subsp. calipensis 0.72 (0.00–2.19) Neo-endemic
Echinocereus acanthosetus – –
Ferocactus flavovirens 0.98 (0.12–2.56) Neo-endemic
Ferocactus latispinus subsp. spiralis 1.80 (0.08–4.41) Neo-endemic 
Ferocactus robustus 1.27 (0.10–3.10) Neo-endemic
Lemaireocereus hollianus 4.43 (2.61–6.81) Paleo-endemic
Mammillaria crucigera 0.83 (0.13–2.00) Neo-endemic
Mammillaria dixanthocentron 0.83 (0.13–2.00) Neo-endemic
Mammillaria haageana subsp. vaupelii 0.20 (0.00–1.02) Neo-endemic
Mammillaria hernandezii 3.01 (1.03–4.37) Paleo-endemic
Mammillaria huitzilopochtli 3.11 (0.83–5.21) Paleo-endemic
Mammillaria kraehenbuehlii – –
Mammillaria napina 5.18 (3.37–7.15) Paleo-endemic
Mammillaria oteroi – –
Mammillaria pectinifera 1.06 (0.07–2.73) Neo-endemic
Mammillaria sphacelata 4.32 (2.65–6.84) Paleo-endemic
Mammillaria supertexta 1.14 (0.26–2.27) Neo-endemic
Mammillaria tepexicensis – –
Mammillaria varieaculeata 1.06 (0.00–2.73) Neo-endemic
Opuntia parviclada – –
Opuntia tehuacana 1.79 (0.75–3.04) Neo-endemic
Polaskia chende 1.70 (0.36–3.60) Neo-endemic
Thelocactus tepelmemensis – –

Cephalocereus and Ferocactus, with four and three species, 
respectively.

Paleo- and neo-endemism at the temporal level

The aligned trnK-matK sequences were 2703 base pairs 
(bp) in length, and the best nucleotide substitution 
model to analyse this alignment was the GTR+G+I. 
Our phylogenetic tree included 21 of the 27 Cactaceae 
species recognised here as endemic to the TCV. The 
dated phylogeny showed that most of the endemic 
species diverged throughout the Pleistocene-Holocene 
(Table 1; Fig. 3 shows a synthetized phylogenetic tree; see 
Supplementary material 2 for a detailed tree). Divergence 
time estimates are moderately variable, ranging from 0.20 
Mya in Mammillaria haageana subsp. vaupelii to 5.18 
Mya in M. napina (Table 1). Following the criterion of Da 
Silva and Bates (2002), divergence time estimates showed 
that of the 21 species included in our phylogenetic tree, 5 
(24%) were classified as paleo-endemics and 16 (76%) as 

neo-endemics (Table 1). Mammillaria napina is the paleo-
endemic with the oldest divergence time at 5.18 Mya 
(highest posterior density (HPD) 3.37–7.15 Mya). This 
globose cactus occurs mostly in a restricted geographic 
range in the north-western TCV.

Paleo- and neo-endemism at the spatial level

The CANAPE analysis identified two cells (19 and 20) of 
high phylogenetic endemism (one with mixed-endemism 
and one with super-endemism) in the TCV (Fig. 2). The 
two cells included 11 (41%) of the 27 endemic species. 
Species such as Cephalocereus fulviceps, Ferocactus 
latispinus subsp. spiralis, Mammillaria dixanthocentron, 
M. haageana subsp. vaupelii, and Opuntia tehuacana are 
categorized as neo-endemics. Other endemic species, 
such as Echinocereus acanthosetus, M. kraehenbuehlii, 
M. oteroi, M. tepexicensis, and Thelocactus tepelmemensis 
are not included in our phylogeny, so they were not 
classified. Both cells are dominated by temperate forests 
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Figure 3. Synthetized phylogenetic tree of Cactaceae estimated from trnK-matK sequences using BEAST (see Supplementary 
material 2 for a detailed tree). Node bars represent the 95% HPD for the age of that node. Numbers at the nodes indicate mean ages. 
The asterisk (*) indicates groups with no endemic species in the Tehuacán-Cuicatlán Valley.

(oak, mixed, and pine forest), with scattered patches of 
xerophytic scrub and seasonally dry forest (Valiente-
Banuet et al. 2000).

DISCUSSION

Recent work supports that centres of endemism occur 
in regions with long-term climatic stability, which likely 
buffered surrounding unfavourable climatic conditions 
(Wiens and Donoghue 2004; Jablonski et al. 2006; 

Fine 2015; Harrison and Noss 2017). In addition, the 
topographic complexity and the isolation of some of 
these regions enhance speciation rates, producing high 
concentrations of endemic species (Cai et al. 2023). 
Climatic fluctuations during the Pleistocene strongly 
impacted the diversification of taxa by limiting the 
distribution of many species to isolated regions of long-
term spatiotemporal climate stability, which contributed 
to the development of refugia (Haffer 1969; Fjeldså 1995; 
Davis and Shaw 2001; Jetz et al. 2004; Harrison and 
Noss 2017). These refugia harbour high biodiversity and 
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endemism, enabling the persistence of paleo-endemic 
taxa but also promoting the speciation of novel taxa (neo-
endemics) (Harrison and Noss 2017; Cai et al. 2023).

In Mexico, several regions, including mountain chains 
and desert areas, have been widely recognised as hotspots 
for plant and animal richness and endemism and have 
frequently been suggested as Pleistocene refugia (e.g. 
Becerra 2005; Weeks et al. 2005; Delgado-Salinas et al. 
2006; Flores-Villela and Martínez-Salazar 2009). These 
refugia likely show a mixture of potential paleo- and neo-
endemic taxa, pointing to multiple historical processes 
involved in the origin and maintenance of biodiversity. 
Particularly, the isolated TCV is a small area surrounded 
by mountains likely acting as barriers that promoted the 
isolation of mainly arid and semi-arid climate-adapted 
taxa, leading to the evolution of an area with high 
biodiversity and a high proportion of endemic species 
(Dávila et al. 2002; Méndez-Larios et al. 2004). The 
family Cactaceae has 27 endemic species in the TCV. This 
number does not seem very large compared to the 519 
species of Cactaceae endemic to the country, which could 
be interpreted as a limitation to this analysis, but this 
pattern of narrow endemism is common to other areas of 
the country, for example, the Chihuahuan Desert has 229 
endemic species. However, this is 50 times more extensive 
than the TCV (Hernández et al. 2004). Still, if regional 
floras are analysed, local endemism also records few 
species, 23 species in Cuatro Ciénegas, Coahuila (Pinkava 
1984), six in Mapimí, Durango (García-Arévalo 2002), 
or ten in El Huizache, San Luis Potosí (Hernández et al. 
2001). In TCV, most endemic species are geographically 
restricted, such as Thelocactus tepelmemensis, recently 
described by Davis et al. (2018) and whose only known 
population has been found growing on limestone 
rock faces in a narrow canyon in northern Oaxaca. 
Some species, however, are widely distributed, such as 
Cephalocereus tetetzo, a branched columnar cactus widely 
distributed in xerophytic shrublands and tropical dry 
forests across the valley (Arias-Montes et al. 1997).

The distinction between paleo-endemics and neo-
endemics has relied on various criteria, including 
geography, taxonomy, cytology, geology, climate, and 
phylogeography (Favarger and Contandriopoulos 1961; 
Bramwell 1972; Major 1988; Cronk 1992); however, 
these criteria may be ambiguous. A bounded timescale 
allowed us to discriminate between palaeo- and neo-
endemics, suggesting that molecular phylogenies may be 
one of the most accurate methods to estimate temporal 
endemism in plant lineages. We, therefore, considered 
the criterion of Da Silva and Bates (2002) as accurate for 
our study because it is based on a historical framework 
from a molecular phylogenetic analysis, which seems 
to fit well with the local geological history of the region 
(Dávalos-Álvarez et al. 2007). Thus, according to our 
dated phylogeny, 76% (16) of the 21 endemic species 
were classified as neo-endemics, suggesting that the 
TCV may have played a major role in recent speciation 
and diversification in Cactaceae. We found that only 24% 

(5) of the endemic Cactaceae species were classified as 
paleo-endemic species (> 2.6 Mya), suggesting a relatively 
minor role of the TCV region in the persistence of ancient 
taxa. Mammillaria napina and Lemaireocereus hollianus 
are paleo-endemic species with a divergence estimated 
at 5.18 and 4.43 Mya, respectively. Divergence times of 
other probable paleo-endemics, such as Mammillaria 
huitzilopochtli (3.11 Mya) and M. hernandezii (3.01 Mya), 
are not clear because these values are near the boundary 
of 2.6 Mya. Furthermore, the HPD values show that 
some neo-endemic taxa could also be classified as paleo-
endemic, such as Ferocactus latispinus subsp. spiralis with 
a divergence time estimated at 1.8 Mya (HPD 0.08–4.41 
Mya), Opuntia tehuacana 1.79 Mya (HPD 0.75–3.04 
Mya), and Polaskia chende 1.7 Mya (HPD 0.36–3.6 Mya).

Neo-endemic species are found in the genera 
Cephalocereus, Echinocereus, Ferocactus, Mammillaria, 
Opuntia, and Polaskia. Mammillaria is the most 
speciose genus in Cactaceae with approximately 180 
species, from which more than 90% of the species are 
distributed in Mexico, and about 85% are endemic to the 
country (Butterworth and Wallace 2004; Crozier 2005; 
Hunt 2006; Hernández and Gómez-Hinostrosa 2015). 
Although the origin and high diversification rates of the 
genus might be associated with geographic expansion 
during the aridification of North America in the 
Miocene 8.62 Mya (HPD 5.83–12.56 Mya; Hernández-
Hernández et al. 2014), a high percentage of Mammillaria 
species could have evolved due to Pleistocene climatic 
changes (Cervantes et al. 2021). Our results showed 
the divergence time estimates for TCV Mammillaria 
endemic species ranged from 0.20 Mya (HPD 0.00–1.02 
Mya) for Mammillaria haageana subsp. vaupelii to 5.18 
Mya (HPD 3.37–7.15 Mya) for M. napina. Thus, six 
out of ten species included in our phylogenetic analysis 
are neo-endemics. Remarkably, most of these taxa are 
geographically restricted; for example, the neo-endemics 
M. crucigera and M. supertexta are restricted to the 
south-eastern TCV region, which is geologically recent 
and mainly comprised of alluvial fans dating back to the 
Pleistocene-Holocene (Brunet 1967; Dávalos-Álvarez et 
al. 2007). This region is exposed to humidity from the 
Gulf slope, which has promoted the development of more 
mesic vegetation, such as tropical seasonally dry forests. 
Speciation processes in tropical seasonally dry forests 
were probably favoured by Pleistocene climatic changes, 
which might have promoted high rates of diversification 
in these isolated and climatically stable environments 
(Pennington et al. 2004). 

Other plant groups also show similar patterns to the one 
found for Mammillaria. Recent studies of ancient lineages, 
such as cycads, have shown that this gymnosperm group 
dates to the late Palaeozoic (Norstog and Nicholls 1997); 
however, extant species such as Dioon (Zamiaceae) are 
recently differentiated lineages (Gregory and Chemnick 
2004; Dorsey et al. 2018). Dorsey et al. (2018) found that 
Dioon originated at 7.86 Mya (HPD 7.09–8.71 Mya) in 
the Miocene, and the diversification of extant species 
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occurred during the Pleistocene, suggesting that modern 
species are not paleo-endemics but rather recently derived 
neo-endemic species. Notably, Dioon purpusii Rose, D. 
argenteum De Luca, Sabato & Vázq.Torres, D. califanoi De 
Luca & Sabato, and D. caputoi T.J.Greg., Chemnick, Salas-
Mor. & Vovides are all neo-endemics restricted to the 
TCV. According to Dorsey et al. (2018), these species have 
evolved from populations periodically shifting to lower 
elevations in response to Pleistocene climatic fluctuations, 
supporting our hypothesis that these climatic changes and 
isolation might have driven divergence and speciation in 
endemic lineages of the TCV. 

Regarding the spatial level, CANAPE identified two 
cells of high phylogenetic endemism (one of mixed-
endemism and one of super-endemism) in the TCV (Fig. 
2). Our results partially agree with Sosa et al. (2018), 
in which the whole TCV was included within a mixed-
endemism centre and no super-endemism areas were 
detected. Similarly, Mishler et al. (2020) identified centres 
of mixed-endemism around the TCV, but no centres of 
super-endemism were reported. Furthermore, a recent 
study on Cactaceae also detected mixed-endemism and 
super-endemism areas around the TCV (Amaral et al. 
2022). These differences in the categorisation assigned 
to the endemism areas may be scale-dependent, as has 
been observed in the estimation of species richness and 
endemism (Whittaker et al. 2001; Hartley and Kunin 
2003; Laffan and Crisp 2003; Chase et al. 2019; Luebert 
et al. 2022), as well as in spatial phylogenetics (Daru et al. 
2020). Recent studies have found that using small scales 
may recover significantly high values of phylogenetic 
diversity (Thornhill et al. 2016, 2017; Scherson et al. 
2017; Allen et al. 2019; Mishler et al. 2020). We used a 
small grid-cell size, which allowed us to recover a centre 
of super-endemism not previously reported, underlying 
the significance of the TCV in the diversification and 
maintenance of species diversity in Cactaceae. Therefore, 
small scales may reveal emergent patterns related to 
phylogenetic endemism, thus changing the categorisation 
of endemism centres.

Both the mixed-endemism area (grid-cell 19) and the 
super-endemism area (grid-cell 20) are dominated by 
temperate forests, with scattered patches of xerophytic 
scrub and seasonally dry forest. In the TCV, oak, mixed, 
and pine forests occur as isolated patches in altitudes 
between 1,630 and 2,200 m (Valiente-Banuet et al. 2000). 
The super-endemism area included two exclusive species: 
Thelocactus tepelmemensis in xerophytic scrub and 
Mammillaria oteroi in Quercus forests, all other species in 
this area are widely distributed in the TCV. Species in the 
mixed-endemism area include Echinocereus acanthosetus, 
M. hernandezii, and M. tepexicensis (the latter endemic to 
this grid cell). Collected specimens in herbariums suggest 
that these species are also distributed in temperate forests, 
such as Pinus, Quercus, and Juniperus forests. These results 
support our hypothesis that mixed- and super-endemism 
areas may be found in topographically or environmentally 
complex regions.

Our results suggest that the TCV region has played 
a predominant role as a cradle, promoting the recent 
evolution of endemic plant species, which have been 
enhanced by landscape heterogeneity and isolation. 
Isolation has promoted in situ speciation, which led to 
high neo-endemism. Additionally, environmental drivers 
such as the long-term stability of climate and habitats on 
a reduced spatial scale have favoured the evolution of the 
TCV endemic plant species.
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