

Polyphyly and homoplasic structures in rhizosolenioid diatom genera: a review

Richard W. Jordan^{1,*}, Matt P. Ashworth², Yuki Uezato³ & Schonna R. Manning²

¹Department of Earth & Environmental Sciences, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990 8560, Japan

²University of Texas at Austin, UTEX Culture Collection of Algae, Department of Molecular Biosciences, 316 Biological Laboratories MS A6700, Austin, TX 78712, USA

³Graduate School of Science & Engineering, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990 8560, Japan *Author for correspondence: sh081@kdw.kj.yamagata-u.ac.jp

Background and aims – Traditionally, extant rhizosolenioid diatom genera have been placed in a single family, the Rhizosoleniaceae. However, preliminary molecular data suggested that the family might be polyphyletic. Therefore, a literature review of the morphological, ultrastructural and molecular data of the rhizosolenioid genera was undertaken.

Methods – In addition to the literature survey, the location of the rimoportula in a number of rhizosolenioid genera was investigated by breaking the valves and observing the fragments in the scanning electron microscope.

Key results – The data provides strong support for the previous separation of *Proboscia* and *Rhizosolenia* at the family level (Probosciaceae vs. Rhizosoleniaceae), with the rimoportula being located at the tip of the proboscis in *Proboscia*, or with an internal labia at the base of the hollow tubular rimoportula (= spine or process) in *Rhizosolenia* and *Pseudosolenia*.

Conclusions – The data suggests that a number of rhizosolenioid genera should be transferred to other families, and that gene sequences of two genera (*Dactyliosolen* and *Neocalyptrella*) are needed as their morphological features differ markedly from those of the Rhizosoleniceae s. str. (*Rhizosolenia*, *Guinardia*, *Pseudosolenia*).

Key words – Bacillariophyta, diatoms, homoplasy, morphology, polyphyly, review, rimoportula, Rhizosoleniaceae.

INTRODUCTION

Traditionally, extant rhizosolenioid diatom genera have been placed in a single family, the Rhizosoleniaceae, because they possess extended girdle regions and a single long spine-like or truncated process on their conical valves. However, it has now become clear that there are fundamental differences within the family with regards to their valve morphology – particularly the position and ultrastructure of the rimoportula. And yet, evidence of this structure in internal view is sparse, likely due to the depth of the conical valve inhibiting easy observation by SEM. Additionally, in nature, valves rarely break at this location further inhibiting EM utility. Details of other valve structures in the rhizosolenioid diatoms are scattered throughout the literature, and only from a few species, making it hard to compare the genera in the family. Preliminary molecular data using 18S rRNA, three-gene analyses, chloroplast markers, and diatom transcriptomes have also suggested that the family might be polyphyletic; however, these analyses have been limited in taxon sampling and by their nature discount the known fossil diversity.

© 2019 The Authors. This article is published and distributed in Open Access under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original work (author and source) is properly cited.

Plant Ecology and Evolution is published by Meise Botanic Garden and Royal Botanical Society of Belgium ISSN: 2032-3913 (print) – 2032-3921 (online)

Thus, we have conducted a literature review of the morphological, ultrastructural and molecular data of the rhizosolenioid genera in order to shed light on the apparent polyphyly within the family. We have also examined intentionally broken cultured cells under SEM to examine the variation in ultrastructure of the rimoportula in three genera to determine if characters are present there to describe the molecular clades.

MATERIALS AND METHODS

Material used for the scanning electron microscope (SEM) came from previous DNA extraction efforts outlined in Theriot et al. (2015). The cell pellets to be extracted were placed in 2.0 mL screw-top tubes with the DNA extraction detergent and several 1.0 mm glass beads and placed in a Beadbeater homogeniser for 45 seconds for cell breakage. After breakage, tubes were centrifuged and the supernatant was removed for DNA extraction following QIAGEN Dneasy Plant Minikit protocol. The remaining pellet, containing the frustule remains and glass beads were stored at room temperature as cell vouchers for the extraction. For this study, these vouchers were resuspended in distilled water and cleared with a 1:1:1 mixture of 30% hydrogen peroxide: concentrated nitric acid: voucher material. The cleared material was then brought back to neutral pH by centrification and dilution, and then dried onto 12 mm diameter glass coverslips. Coverslips were then mounted on aluminium SEM stubs, coated in 15 nm of iridium with a Cressington 208 Benchtop sputter coater and observed with a Zeiss Supra 40 VP field emission SEM.

MORPHOLOGICAL EVIDENCE OF HOMOPLASIC VALVE STRUCTURES

It was known for many decades that rhizosolenioid diatoms possessing truncated tips, like Rhizosolenia alata Brightw. (and its varieties) and closely related taxa, were different from the traditional species of Rhizosolenia Brightw. that bore 'spines' or 'processes'. Thus, those with truncated tips were often placed in a separate section of the genus - namely, Alatae (Gran 1908) or Inermes (Pavillard 1925). Some authors recognised that a separate genus was needed for these truncated forms (e.g. Hasle 1975), but it was not until much later that Sundström (1986) in his published doctoral thesis created a monotypic genus with *Proboscia alata* (Brightw.) Sundström as the type species (with its circumscription restricted to North Atlantic type material). However, Sundström (1986) was reluctant to add further species to his new genus until new data became available, and although Priddle et al. (1990) considered some polar Rhizosolenia taxa to belong to Proboscia Sundström, their book chapter was not the place to make such transfers. This happened over the following years when living species were either transferred to Proboscia (Jordan et al. 1991, Hernández-Becerril 1995, Moreno et al. 1996) or were newly described (Takahashi et al. 1994).

Further evidence supporting the separation of *Proboscia* and *Rhizosolenia* concerns the position of the rimoportula and the steps involved in valve morphogenesis. It has

been demonstrated using cultured materials that the spine (or process) in Rhizosolenia setigera Brightw. is the external portion of the rimoportula (van de Meene & Pickett-Heaps 2004), while the longitudinal slit is the corresponding feature in Proboscia alata (van de Meene & Pickett-Heaps 2002). In short, the proboscis is not a rimoportula. Pseudosolenia Sundström also bears a spine-like external portion of the rimoportula (Sundström 1986), and so is similar to Rhizosolenia, but the proboscis-like extension in Urosolenia Round & Crawford lacks a longitudinal slit, despite bearing small spinulae at the tip (Round et al. 1990). Guinardia H.Peragallo also has a recognisable rimoportula, which is often associated with a hollow tubular process that fits into a depression on the valve of the complementary cell (e.g. G. cylindrus (Cleve) Hasle - illustrated in Hasle (1975) and Sundström (1986) as "Rhizosolenia cylindrus Cleve"). On the other hand, Dactvliosolen Castracane appears to be unrelated to the other rhizosolenioid diatoms with regards to its girdle structure (i.e. large pores, internal flanges - illustrated in Hasle 1975).

During valve morphogenesis in P. alata, the proboscis increases in length by anti-tip growth (i.e. it grows from the tip backwards), and eventually forms the valve (van de Meene & Pickett-Heaps 2002). The claspers are formed when the expanding (still unsilicified) conical valve comes into contact with the silicified rigid tip of the sibling cell. At first the proboscis presses against the valve, creating an impression of the tip, then the valve produces flanges of silica around it to complete the claspers. This tip-clasper combination allows sibling cells to be loosely filamentous (van de Meene & Pickett-Heaps 2002). The position of the slit (external part of the rimoportula) near the end of the tip suggests that its location on a flattened centric valve would be equivalent to the annulus. During valve morphogenesis in *R. setigera*, growth occurs in two directions; distally to form the hollow, external portion of the rimoportula and backwards to form the conical valve. The extremely long spine-like rimoportula (150-250 µm long) does not appear to touch the opposing valve, and so claspers are not formed and the sibling cells are either solitary or cluster together in parallel (somewhat similar to Bacillaria J.F.Gmel.) (van de Meene & Pickett-Heaps 2004). One presumes that those Rhizosolenia spp. that possess claspers (and otaria) follow a similar valve morphogenesis pathway to that of P. alata, while the valves of the solitary P. subarctica K. Takahashi, R. Jordan & Priddle follow that of R. setigera.

Thus, the claspers are a direct consequence of the distal ends of valve extensions making an impression on the as yet unsilicified valves of sibling cells, and thus should not be regarded as homologous structures – although their appearance and function may be similar. It is also likely that numerous unrelated genera – e.g. *Pyxilla* Grev., *Skeletonema* Grev., and *Hemiaulus* Heib. (and other hemiauloids) – with long valve extensions use the same mechanism to create impressions or attachment structures on opposing valves. Furthermore, it is assumed that fossil *Proboscia* spp. and *Rhizosolenia* spp. with very long valve extensions (> 100 µm) were solitary because they lacked claspers.

The ultrastructure of the rimoportula also varies considerably within the Rhizosoleniaceae s. lat. Externally, the

Figure 1 – SEM images of the internal and external rimoportula ultrastructure of selected rhizosolenioid taxa. Images taken with stage tilted to 30° angle and digitally rotated. Voucher numbers indicate DNA extraction associated with each strain, with more material available from author MPA. Material was broken with 1 mm glass bead in Beadbeater per methods in Ashworth et al. (2013) and Theriot et al. (2015); A–C, *Proboscia* spp. (DNA extraction vouchers HK300, HK236 and HK032, respectively); D & E, *Rhizosolenia* cf. *setigera* (DNA extraction vouchers HK032 and HK268, respectively); F, *Rhizosolenia imbricata* HK244; G, *Rhizosolenia formosa* HK354; H, *Neocalyptrella robusta* HK423. Scale bars = 1 μ m.

were a that of the aloreant of D aloreant in D function and A Darred an C Analia (Contractor) II Dancella (Contractor) II Dancella (Contractor)	Table $1 - N$ Although for definitio observations area into wl analogous to st al. 2015),	Morphological and there is no rimopor ons. ³ A tube is prese is). ⁴ However, some hich the opposing v o the claspers. ⁷ How	cytological features of trula, labiated structures ent in D . <i>fragilissimus</i> (z species (e.g. R . <i>setigera</i> valve process fits (see e wever, they are absent ir op into the pocket-like s	the genera in the Rh have been observed Bergon) Hasle and D and R. bergonii) lach $and R. bergonii) lachg. Yun & Lee 2011)n P. subarctica (Takah)tructure called claspe$	iizosoleniaceae s. lat. on the conical part o <i>. phuketensis</i> (Sundst & them (Sunesen & Sa & them (Sunesen & Sa ashi et al. 1994). ⁸ Th rashi et al. 1994). ⁸ Th rashi et al. 1994). ⁸ Th	of the valve (Sala et al tröm) Hasle but not in r 2007). ⁵ Claspers, in t ry valve process fits in te valve has an impress	. 2008). ² See Herné <i>D. blavyanus</i> (H.Pe the true sense, are ab ito a depression (Yu sion of the distal end sis, the formation of	indez-Becerril & Mea ragallo) Hasle (M.P. / sent, but the valve doe n & Lee 2011), whic to f the long process (i this impression proba	ve del Castillo (199 Ashworth, unpublish s: possess a contigue h could be consider bly occurs in Trema
			Rhizosolenia	Pseudosolenia	Guinardia	Proboscia	Urosolenia	Neocalyptrella	Dactyliosoler
Rhizosolenia Pseudosolenia Guinardia Proboscia Urosolenia Neocalyptrella Dactyliosolei		rimoportula	tubular (external) flattened labia (internal)	tubular externally, convoluted labia internally (= cornuportula ²)	tubular externally, labia internally	slit-like externally, labia internally	absent ¹	tubular externally, labia or decorated labia internally (= conflatuportula ²)	irregular slit or t externally ³ , stall labia internall
RhizosoleniaPseudosoleniaGuinardiaProbosciaUrosoleniaNeocalyptrellaDactyliosoletubular (external)tubular externally,tubular externally,tubular externally,tubular externally,tricegular slit orrimoportulaflattened labiatubular externally (=labia internally (=labia internally (=labia internally (=(internal)convoluted la ²)convoluted labiatubular externally (=labia internally (=labia internally (=(internal)convoprtula ²)convoprtula ²)conflatuportula ²)tubular externally (=labia internally (=		claspers	usually present ⁴	absent ⁵	usually present ⁶	usually present ⁷	absent ⁸	absent	usually absen
RhizosoleniaPseudosoleniaGuinardiaProbosciaUrosoleniaNeocalyptrellaDactyliosolerimoportulatubular (externally flattened labiatubular externally, internallyexternally, labia internallyslit-like externally, labia internallyslit-like externally, labia internallytubular externally, labia internallyfubular		otaria	usually present ⁴	absent	absent	absent	absent	absent	absent
RhizosoleniaPseudosoleniaGuinardiaProbosciaUrosoleniaNeocalyptrellaDactyliosolerimoportulatubular (external)tubular externally, flattened labiatubular externally, internallyslit-like externally, labia internallyslit-like externally, labia internallyslit-like externally, labia internallynoular externally, labia internallynoular externally, labia internallynoular externally, labia internallynoular externally, labia internallyslit-like externally, labia internallynoular externally, labia internallyn	vegetative	pores in velum e of copulae	slit-like (single or multiple)	slit-like (single)	rectangular/wide slit (single) ¹⁰	round (single or multiple)	unoccluded round poroids on the bands ¹¹	slit-like (single)	round (multiple slit-like ¹²
Anizosolenia Pseudosolenia Guinardia Proboscia Urosolenia Neocalyptrella Dacryfiosole rimoportula tubular externally, flattened labia tubular externally, internally tubular externally, labia internally slit-like externally, labia internally slit-like externally, labia internally tubular externally, labia internally absent ¹ ubular externally, integular slit or labia internally ubular externally, labia internally absent ¹ ubular externally, labia internally absent ¹ ubular externally, labia internally integular slit or labia internally to arria usually present ⁴ absent absent<	phase	auxospore	90° to the mother cell, emerging from girdle area ¹³	not known	large bladder forms between broken halves of cell ¹⁴	terminal ¹⁵	reported but not illustrated ¹⁶	not known	not known
Arizosolenia Peeudosolenia Guinardia Proboscia Urosolenia Neocalyptrella Dactyliosole rimoportula tubular externally, funternal) tupular externally, funternal, funterna, funternal, fun		valve growth	two-directional; distally to form external rimoportula, proximally to form conical valve ¹⁷	not known	not known	anti-tip; proximally to form proboscis and conical valve ¹⁸	not known	not known	not known
ArizosoteniaPseudosoteniaGuinardiaProbosciaUrosoteniaNeocatypreliaDacytiosotriubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)Dacytiosotriubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)Dacytiosotriubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)riubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)tubular (xternal)(internal)tubular (xternal)tubular (xternal)absentabsenttubular (xternal)(internal)tubular (xternal)ubular (xternal)absentabsentabsentabsent(internal)usually presentabsentusually presentabsentabsentabsentabsentvariausually presentabsentabsentabsentabsentabsentabsentvariausually presentabsentabsentabsentabsentabsentvariasilt-like (single orsilt-like (single)silt-like (single ortound (single ortound (single orvalve growthsilt-like (single orsilt-like (single ortound (single ortound (single ortound (single orvalve growthsilt-like (single orsilt-like (single orsilt-like (single ortound (single ortound (single orvalve growthgrowthsilt-like (single orsilt-like (single or		cytoplasmic rotation	observed ¹⁷	not known	not known	not observed ¹⁸	not known	not known	not known

absent

absent

absent

present, but perhaps only on one valve¹⁹

absent

absent

absent

claspers

not known

not known

not known

2, as in the vegetative cell

not known

not known

rows of copulae sometimes $> 2^{20}$

absent

absent

absent

absent

absent

absent

absent

winter cell otaria

not known

not known

present²²

not known

not known

not known

sometimes present²¹

resting spores

rimoportula of Proboscia species is a slit near the top of the valve, while internally it is formed of two adjacent thin sheets of silica extending from the interior of the tip, down the proboscis well past the external slit (fig. 1A-C). In the majority of the genera in the Rhizosoleniaceae, the external portion of the rimoportula is a conical tube, usually at the apex of the valve. Internally, the rimoportula of Rhizosolenia setigera-like species is a slit across a hemisphere at the base of the external spine, which can be across the side (fig. 1D) or apex (fig. 1E) of the hemisphere. In the otaria-bearing Rhizosolenia spp. examined in this study, the rimoportula is a slit across the base of the external spine (fig. 1F & G), with a hyaline thickening around the slit. There appears to be some variation in the morphology of this thickening and the orientation of the slit relative to the otaria among taxa. In Neocalyptrella robusta (G.Norman ex Ralfs) Hernández-Becerril & Meave del Castillo, the internal structure of the rimoportula is a laterally-compressed block, with triangular spines perpendicular to the rimoportula slit (fig. 1H).

The morphological and cytological features separating the genera in the Rhizosoleniaceae s. lat. are presented in table 1.

THE RHIZOSOLENIACEAE IS POLYPHYLETIC BY DNA DATA

According to Round et al. (1990) the Rhizosoleniales consists of two families, the Rhizosoleniaceae and the Pyxillaceae, with the former including the following extant genera; Dactyliosolen, Guinardia, Proboscia, Pseudosolenia, Rhizosolenia, and Urosolenia. Since then, only Neocalyptrella Hern.-Becerril & Meave has been added (originally named "Calyptrella" Hern.-Becerril & Meave, the genus was later changed to Neocalyptrella due to the existing occupation of the genus Calvptrella Naudin in the botanical nomenclature - see Hernández-Becerril & Meave del Castillo 1997 for further detail). However, the Rhizosoleniaceae is polyphyletic. In early 18S ribosomal RNA phylogenetic studies (Medlin et al. 2000, Medlin & Kaczmarska 2004), Proboscia occupies a lone branch among the radial centrics ("Clade 1"), which includes the Coscinodiscales, Aulacoseirales, Melosirales, Leptocylindrales, Corethrales, Paraliales and Rhizosoleniales. However, Proboscia and Rhizosolenia are not closely related to each other, with the former either sister to the Coscinodiscales, Melosirales and Aulacoseirales (Medlin et al. 2000, Sorhannus 2004) or to "Clade 2" containing the rest of the diatom taxa (Medlin & Kaczmarska 2004), and the latter (plus Guinardia) sister to Corethron Castracane (Medlin et al. 2000, Medlin & Kaczmarska 2004). Increased taxon sampling and additional DNA markers have failed to bring Proboscia and Rhizosolenia together into a clade; three-gene analyses (adding the plastid-encoded rbcL and psbC markers to nuclear ribosomal SSU) place Proboscia either sister to all diatoms other than Corethron and Leptocylindrus Cleve (Ashworth et al. 2013) or sister to the Coscinodiscales (Nakov et al. 2014), while the addition of four more chloroplast markers saw Proboscia sister to the Melosirales (Theriot et al. 2015 – reproduced in fig. 2), which was also observed in a more recent 1151 taxon, 11-gene dataset (Nakov et al. 2018) and a phylogenetic analysis of orthologous markers from diatom transcriptomes (Parks et al. 2017). Furthermore, several taxa currently in the Rhizosoleniaceae actually come out among the clades of Medlin & Kaczmarska's (2004) Class Mediophyceae (found within the Subdivision Bacillariophytina Medlin & Kaczmarska in their fig. 1, collapsed here for clarity) in molecular phylogenies. Dactyliosolen blavvanus (H.Perag.) Hasle and Neocalyptrella robusta have both consistently been found in mediophycean clades; D. blavyanus in a clade with the Chaetocerotales and Hemiaulales (Ashworth et al. 2013, Nakov et al. 2014, 2018, Theriot et al. 2015) and N. robusta either sister to all other mediophyte diatoms but Attheya T.West (Sinninghe Damsté et al. 2004) or in a clade with Biddulphia Gray and Attheya (Nakov et al. 2018). Sequence data for Urosolenia also place it in the clade with the Chaetocerotales and Hemiaulales, sister to Acanthoceras Honigmann (Ashworth et al. 2013, Nakov et al. 2014, 2018, Theriot et al. 2015), which has a frustule morphologically identical to the former genus but with two hollow, open processes ('setae') instead of one (Round et al. 1990). Like Chaetoceros Ehrenb., both Urosolenia and Acanthoceras are known to produce resting spores (Edlund & Stoermer 1993).

These differences in the earlier phylogenetic studies, together with key morphological features, led Nikolaev & Harwood (2000) to erect the Probosciaceae. However, validation of the new family name was carried out later by Jordan & Ligowski (2004), because there was no formal description in the original paper.

IS *PROBOSCIA ALATA* A SINGLE ENTITY OR A SPECIES COMPLEX?

In the old literature there are at least six forms or varieties of Rhizosolenia alata – R. alata f. alata, R. alata var. corpulenta Cleve, R. alata f. genuina Gran, R. alata f. gracillima (Cleve) Grunow, R. alata f. indica H.Perag. and R. alata f. curvirostris Gran. The latter two have since been raised to species level, as Proboscia indica (H.Perag.) Hern.-Becerril and P. subarctica K.Takahashi, R.Jordan & Priddle, respectively, while the others (except R. alata f. alata) were synonymised with either the type species (P. alata) or with P. indica. However, there are small morphological differences in P. alata valves from the Arctic, tropical and Southern Ocean that point towards two or more cryptic or pseudocryptic species (compare specimens illustrated in Jordan et al. 1991, Takahashi et al. 1994, Jordan & Ligowski 2004) - notably, the length of the proboscis and degree of proboscis curvature. Furthermore, regarding the copulae, there are several pores in the velum of tropical specimens, but only one in the velum of specimens from polar regions (Sundström 1986). Although there appear to be morphological differences in the winter valve probosces among the three Southern Ocean species (see Jordan et al. 1991), this feature has not been well studied, but might prove to be another good taxonomic character. Finally, the auxospores of P. alata s. lat. are known to exhibit some differences, as the Southern Ocean form always has a bifurcated end (Jordan et al. 1991, Jordan & Ligowski 2004), while the one from northern waters seemingly does not (e.g. see Lebour 1930, Cupp 1943). Indeed, the auxospores of other species also show some species-specific characters (compare P. alata with P. truncata (G.Karst.) Nöthig & Ligowski: Jordan & Ligowski 2004, 2006). Thus,

gene sequences of *P. alata* s. lat. specimens from around the world might help to distinguish these similar-looking forms.

FURTHER STUDIES IN THE RHIZOSOLENIACEAE?

While the ultrastructure of the rimoportula and patterns of valve morphogenesis help us to explain the molecular paraphyly of the Rhizosoleniaceae with regard to *Proboscia* and *Neocalyptrella*, questions remain about rhizosolenioid evolution. There are certainly more data to be collected on rhizosolenioid taxa, though to understand the evolution of *Proboscia* in particular, other non-rhizosolenioid clades should be included in future studies. What ultrastructural and developmental characters, if any, does *Proboscia* share with *Ellerbeckia* R.M.Crawford, *Aulacoseira* Thwaites and *Melosira* C.Agardh, with whom the genus shares a (poorly-supported,

admittedly) molecular clade (fig. 2)? What characters, if any, does the genus share with *Leptocylindrus* Cleve and *Corethron* Castracane, which also have long pervalvar axes, but lack a rimoportula (Round et al. 1990)? What other fossil lineages, such as *Pyxilla* discussed above, should be thoroughly documented by electron microscopy when looking for common ultrastructure?

Details on the ultrastructure of the auxospore and initial cell has been suggested as a source of key characters to understanding the phylogeny of diatoms (Medlin & Kaczmarska 2004, Kaczmarska et al. 2013). However, can we really expect to observe the perizonial bands of the Bacillariophytina clade, where we find *Neocalyptrella*, *Dactyliosolen blavyanus*, *Acanthoceras* and *Urosolenia*, when these taxa do not exhibit an elongation of the valve for which these bands allow? In fact, these "Bacillariophytinan rhizosolenioids"

Figure 2 – Phylogenetic tree adapted from NEWICK-formatted trees in Theriot et al. (2015, supplementary files). Maximum likelihood tree based on a 7-gene dataset (nuclear-encoded ribosomal SSU, chloroplast-encoded *rbcL*, *psaA*, *psaB*, *psbA*, *psbC*, *atpB* markers) with bootstrap values from 1000 pseudoreplicates over the appropriate nodes. Rhizosolenioid taxa are highlighted, showing the family is not monophyletic with respect to *Proboscia*. The Bacillariophytina clade is collapsed in this figure for clarity.

could provide a model to explore the molecular basis for initial cell development – closely-related, elongate taxa which do not express perizonial bands will transcribe genes for the development of those bands, while the rhizosolenioids would not. Comparing the transcriptomes of rhizosolenioid and elongate Bacillariophytinan taxa during auxosporulation and initial cell formation could reveal those genes. It would also be interesting to compare those results to other non-elongate Bacillariophytinan clades, such as the Thalassiosirales, to investigate whether the loss of elongate valves was facilitated by the molecular mechanisms in both groups. In this way, we can use the molecular paraphyly of the Rhizosoleniaceae as a map to guide investigations of molecular and genomic mechanisms of all diatoms.

ACKNOWLEDGEMENTS

This manuscript deals with the terminology of valve structures (notably the rimoportula) within rhizosolenioid taxa, and as such is a contribution to the on-going project DIA-TERM, which is led by Eileen Cox, and to whom this Festschrift is dedicated. Funding for SEM work conducted at UT Austin provided by US Department of Defense grant # W911NF-17-2-0091.

REFERENCES

- Ashworth M.P., Nakov T., Theriot E.C. (2013) Revisiting Ross and Sims (1971): toward a molecular phylogeny of the Biddulphiaceae and Eupodiscaceae (Bacillariophyceae). Journal of Phycology 49: 1207–1222. https://doi.org/10.1111/jpy.12131
- Cupp E.E. (1943) Marine plankton diatoms of the west coast of North America. Berkeley & Los Angeles, University of California Press. [reprinted by Otto Koeltz Science Publishers in 1977].
- Edlund M.B., Stoermer E.F. (1993) Resting spores of the freshwater diatoms Acanthoceras and Urosolenia. Journal of Paleolimnology 9: 55–61. https://doi.org/10.1007/BF00680035
- Ferreyra G.A., Ferrario M.E. (1983) Variación morfológica estacional de Rhizosolenia alata Brightwell en Bahía Paraíso, Antártida Occidental. Contribución del Instituto Antártico Argentino 300: 1–18.
- Gran H.H. (1908) Diatomeen. Nordisches Plankton 19: 1-146.
- Hasle G.R. (1975) Some living marine species of the diatom family Rhizosoleniaceae. Nova Hedwigia, Beiheft 53: 99–151.
- Hernández-Becerril D.U. (1995) Planktonic diatoms from the Gulf of California and coasts off Baja California: the genera Rhizosolenia, Proboscia, Pseudosolenia and former Rhizosolenia species. Diatom Research 10: 251–267. https://doi.org/10.1080/02 69249X.1995.9705348
- Hernández-Becerril D.U., Meave del Castillo M.E. (1996) The marine planktonic diatom Rhizosolenia robusta (Bacillariophyta): morphological studies support its transfer to a new genus, Calyptrella gen. nov. Phycologia 35: 198–203. https://doi. org/10.2216/i0031-8884-35-3-198.1
- Hernández-Becerril D.U., Meave del Castillo M.E. (1997) Neocalyptrella, gen. nov., a new name to replace Calyptrella Hernández-Becerril et Meave. Phycologia 36: 327. https://doi. org/10.2216/i0031-8884-36-4-329.1

- Jordan R.W., Ligowski R. (2004) New observations on Proboscia auxospores and validation of the Family Probosciaceae fam. nov. Vie et Milieu 54: 91–103.
- Jordan R.W., Ligowski R. (2006) Observations on the auxospores, initial cells and vegetative cells of Proboscia truncata (Bacillariophyta). Nova Hedwigia, Beiheft 130: 201–212.
- Jordan R.W., Ligowski R., Nöthig E.-M., Priddle J. (1991) The diatom genus Proboscia in Antarctic waters. Diatom Research 6: 63–78. https://doi.org/10.1080/0269249X.1991.9705148
- Kaczmarska I., Poulíčková A., Sato S., Edlund M.B., Idei M., Watanabe T., Mann, D.G. (2013) Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Research 28: 263–294. https://doi.org/10.1080/026924 9X.2013.791344
- Lebour M.V. (1930) The plankton diatoms of northern seas. London, The Ray Society. [Reprinted by Otto Koeltz Science Publishers in 1978].
- Liu Y., Kociolek J.P., Fan Y. (2016) Urosolenia and Acanthoceras species from Hainan Province, China. Phytotaxa 244: 161–173. https://doi.org/10.11646/phytotaxa.244.2.4
- Medlin L.K., Kaczmarska I. (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245–270. https://doi. org/10.2216/i0031-8884-43-3-245.1
- Medlin L.K., Kooistra W.C.H.F., Schmid A.-M.M. (2000) A review of the evolution of the diatoms – a total approach using molecules, morphology and geology. In: Witkowski A., Sieminska J. (eds) The origin and early evolution of the diatoms: fossil, molecular and biogeographic approaches: 13–35. Cracow, W. Szafer Institute of Botany, Polish Academy of Sciences.
- Meunier A. (1910) Microplankton des Mers de Barents et de Kara. Brussels, Duc d'Orléans, Campagne Arctique de 1907. 2 volumes.
- Meunier A. (1915) Microplankton de la Mer Flamande. Ile Partie. Brussels, Mémoires du Musée Royal d'Histoire Naturelle de Belgique, vol. 3.
- Moreno J.L., Licea S., Santoyo H. (1996) Diatomeas del Golfo de California. La Paz, Universidad Autonoma de Baja California Sur.
- Nakov T., Ashworth M., Theriot E.C. (2014) Comparative analysis of the interaction between habitat and growth form in diatoms. ISME Journal 9: 246–247. https://doi.org/10.1038/ismej.2014.108
- Nakov T., Beaulieu J.M., Alverson A.J. (2018) Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytologist 219: 462–473. https://doi.org/10.1111/ nph.15137
- Nikolaev V.A., Harwood D.M. (2000) Diversity and system of classification centric diatoms. In: Witkowski A., Sieminska J. (eds) The origin and early evolution of the diatoms: fossil, molecular and biogeographic approaches: 37–53. Cracow, W. Szafer Institute of Botany, Polish Academy of Sciences.
- Parks M.B., Wickett N.J., Alverson A.J. (2017) Signal, uncertainty, and conflict in phylogenomic data for a diverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). Molecular Biology and Evolution 35: 80–93. https://doi.org/10.1093/molbev/ msx268
- Pavillard J. (1905) Recherches sur la flore pélagique (Phytoplankton) de l'étang de Thau. Montpellier, Gustave Firmin, Montane et Sicardi.

- Pavillard J. (1925) Bacillariales. Reports of the Danish Oceanographic Expedition 1908–1910 to the Mediterranean and adjacent seas 2: 1–72.
- Priddle J., Jordan R.W., Medlin L.K. (1990) Family Rhizosoleniaceae. In: Medlin L.K., Priddle J. (eds) Polar Marine Diatoms: 115–127. Cambridge, British Antarctic Survey.
- Rott E., Kling H., McGregor G. (2006) Studies on the diatom Urosolenia Round & Crawford (Rhizosoleniophycidae) Part 1. New and re-classified species from subtropical and tropical freshwaters. Diatom Research 21: 105–124. https://doi.org/10.1080/026 9249X.2006.9705655
- Round F.E., Crawford R.M., Mann D.G. (1990) The diatoms. Biology and morphology of the genera. Cambridge, Cambridge University Press.
- Sala S.E., Núñez-Avellaneda M., Vouilloud A.A. (2008) Ultrastructure of the frustule of Urosolenia species from the Colombian and Peruvian Amazon: U. delicatissima spec. nov., U. amazonica spec. nov. and U. braunii (Hustedt) Rott & Kling. Diatom Research 23: 159–169. https://doi.org/10.1080/026924 9X.2008.9705744
- Sinninghe Damsté J.S., Muyzer G., Abbas B., Rampen S.W., Massé G., Allard W.G., Belt S.T., Robert J.-M., Rowland S.J., Moldowan J.M., Barbanti S.M., Fago F.J., Denisevich P., Dahl J., Trindade L.A.F., Schouten S. (2004) The rise of the rhizosolenid diatoms. Science 304: 584–587. https://doi.org/10.1126/ science.1096806
- Sorhannus U. (2004) Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU rRNA sequences. Cladistics 20: 487–497. https://doi.org/10.1111/j.1096-0031.2004.00034.x
- Sundström B.G. (1986) The marine diatom genus Rhizosolenia (A new approach to the taxonomy). Ph.D. Thesis, Lund University, Lund, Sweden.
- Sunesen I., Sar E.A. (2007) Marine diatoms from Buenos Aires coastal waters (Argentina). IV. Rhizosolenia s. str., Neocalyp-

trella, Pseudosolenia, Proboscia. Phycologia 46: 628–643. https://doi.org/10.2216/07-13.1

- Takahashi K., Jordan R., Priddle J. (1994) The diatom genus Proboscia in subarctic waters. Diatom Research 9: 411–428. https://doi.org/10.1080/0269249X.1994.9705317
- Theriot E.C., Ashworth MP, Nakov T., Ruck E, Jansen R.K. (2015) Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. Molecular Phylogenetics and Evolution 89: 28–36. https://doi. org/10.1016/j.ympev.2015.03.012
- Tremarin P.I., Freire E.G. Algarte V.M., Ludwig T.V. (2015) Acanthoceras and Urosolenia species (Diatomeae) in subtropical reservoirs from South Brazil: Ultrastructure, distribution and autoecology. Biota Neotropica 15: e20140043. https://doi. org/10.1590/1676-06032014004314
- Van de Meene A.M.L., Pickett-Heaps J.D. (2002) Valve morphogenesis in the centric diatom Proboscia alata Sundstrom. Journal of Phycology 38: 351–363. https://doi.org/10.1046/j.1529-8817.2002.01124.x
- Van de Meene A.M.L., Pickett-Heaps J.D. (2004) Valve morphogenesis in the centric diatom Rhizosolenia setigera (Bacillariophyceae, Centrales) and its taxonomic implications. European Journal of Phycology 39: 93–104. https://doi.org/10.1080/0967 0260310001646522
- Yun S.M., Lee J.H. (2011) Morphology and distribution of some marine diatoms, family Rhizosoleniaceae, genus Proboscia, Neocalyptrella, Pseudosolenia, Guinardia, and Dactyliosolen in Korean coastal waters. Algae 26: 299–315. https://doi. org/10.4490/algae.2011.26.4.299

Managing Editor: David G. Mann Submission date: 1 Sep. 2018 Acceptance date: 19 Dec. 2018