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REVIEW

Background and aims – Traditionally, extant rhizosolenioid diatom genera have been placed in a single 
family, the Rhizosoleniaceae. However, preliminary molecular data suggested that the family might be 
polyphyletic. Therefore, a literature review of the morphological, ultrastructural and molecular data of the 
rhizosolenioid genera was undertaken.
Methods – In addition to the literature survey, the location of the rimoportula in a number of rhizosolenioid 
genera was investigated by breaking the valves and observing the fragments in the scanning electron 
microscope.
Key results – The data provides strong support for the previous separation of Proboscia and Rhizosolenia 
at the family level (Probosciaceae vs. Rhizosoleniaceae), with the rimoportula being located at the tip of 
the proboscis in Proboscia, or with an internal labia at the base of the hollow tubular rimoportula (= spine 
or process) in Rhizosolenia and Pseudosolenia. 
Conclusions – The data suggests that a number of rhizosolenioid genera should be transferred to other 
families, and that gene sequences of two genera (Dactyliosolen and Neocalyptrella) are needed as their 
morphological features differ markedly from those of the Rhizosoleniceae s. str. (Rhizosolenia, Guinardia, 
Pseudosolenia).

Key words – Bacillariophyta, diatoms, homoplasy, morphology, polyphyly, review, rimoportula, 
Rhizosoleniaceae.
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INTRODUCTION

Traditionally, extant rhizosolenioid diatom genera have been 
placed in a single family, the Rhizosoleniaceae, because they 
possess extended girdle regions and a single long spine-like 
or truncated process on their conical valves. However, it has 
now become clear that there are fundamental differences 
within the family with regards to their valve morphology – 
particularly the position and ultrastructure of the rimopor-
tula. And yet, evidence of this structure in internal view is 
sparse, likely due to the depth of the conical valve inhibit-

ing easy observation by SEM. Additionally, in nature, valves 
rarely break at this location further inhibiting EM utility. De-
tails of other valve structures in the rhizosolenioid diatoms 
are scattered throughout the literature, and only from a few 
species, making it hard to compare the genera in the fam-
ily. Preliminary molecular data using 18S rRNA, three-gene 
analyses, chloroplast markers, and diatom transcriptomes 
have also suggested that the family might be polyphyletic; 
however, these analyses have been limited in taxon sampling 
and by their nature discount the known fossil diversity. 
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Thus, we have conducted a literature review of the mor-
phological, ultrastructural and molecular data of the rhizos-
olenioid genera in order to shed light on the apparent poly-
phyly within the family. We have also examined intentionally 
broken cultured cells under SEM to examine the variation 
in ultrastructure of the rimoportula in three genera to deter-
mine if characters are present there to describe the molecular 
clades. 

MATERIALS AND METHODS

Material used for the scanning electron microscope (SEM) 
came from previous DNA extraction efforts outlined in The-
riot et al. (2015). The cell pellets to be extracted were placed 
in 2.0 mL screw-top tubes with the DNA extraction detergent 
and several 1.0 mm glass beads and placed in a Beadbeater 
homogeniser for 45 seconds for cell breakage. After break-
age, tubes were centrifuged and the supernatant was removed 
for DNA extraction following QIAGEN Dneasy Plant Mini-
kit protocol. The remaining pellet, containing the frustule re-
mains and glass beads were stored at room temperature as 
cell vouchers for the extraction. For this study, these vouch-
ers were resuspended in distilled water and cleared with a 
1:1:1 mixture of 30% hydrogen peroxide: concentrated ni-
tric acid: voucher material. The cleared material was then 
brought back to neutral pH by centrification and dilution, 
and then dried onto 12 mm diameter glass coverslips. Cov-
erslips were then mounted on aluminium SEM stubs, coated 
in 15 nm of iridium with a Cressington 208 Benchtop sputter 
coater and observed with a Zeiss Supra 40 VP field emission 
SEM.

MORPHOLOGICAL EVIDENCE OF  
HOMOPLASIC VALVE STRUCTURES

It was known for many decades that rhizosolenioid diatoms 
possessing truncated tips, like Rhizosolenia alata Brightw. 
(and its varieties) and closely related taxa, were different 
from the traditional species of Rhizosolenia Brightw. that 
bore ‘spines’ or ‘processes’. Thus, those with truncated tips 
were often placed in a separate section of the genus – name-
ly, Alatae (Gran 1908) or Inermes (Pavillard 1925). Some au-
thors recognised that a separate genus was needed for these 
truncated forms (e.g. Hasle 1975), but it was not until much 
later that Sundström (1986) in his published doctoral thesis 
created a monotypic genus with Proboscia alata (Brightw.) 
Sundström as the type species (with its circumscription re-
stricted to North Atlantic type material). However, Sund-
ström (1986) was reluctant to add further species to his new 
genus until new data became available, and although Prid-
dle et al. (1990) considered some polar Rhizosolenia taxa 
to belong to Proboscia Sundström, their book chapter was 
not the place to make such transfers. This happened over the 
following years when living species were either transferred 
to Proboscia (Jordan et al. 1991, Hernández-Becerril 1995, 
Moreno et al. 1996) or were newly described (Takahashi et 
al. 1994).

Further evidence supporting the separation of Probos-
cia and Rhizosolenia concerns the position of the rimopor-
tula and the steps involved in valve morphogenesis. It has 

been demonstrated using cultured materials that the spine 
(or process) in Rhizosolenia setigera Brightw. is the external 
portion of the rimoportula (van de Meene & Pickett-Heaps 
2004), while the longitudinal slit is the corresponding feature 
in Proboscia alata (van de Meene & Pickett-Heaps 2002). 
In short, the proboscis is not a rimoportula. Pseudosolenia 
Sundström also bears a spine-like external portion of the ri-
moportula (Sundström 1986), and so is similar to Rhizosole-
nia, but the proboscis-like extension in Urosolenia Round & 
Crawford lacks a longitudinal slit, despite bearing small spi-
nulae at the tip (Round et al. 1990). Guinardia H.Peragallo 
also has a recognisable rimoportula, which is often associ-
ated with a hollow tubular process that fits into a depression 
on the valve of the complementary cell (e.g. G. cylindrus 
(Cleve) Hasle – illustrated in Hasle (1975) and Sundström 
(1986) as “Rhizosolenia cylindrus Cleve”). On the other 
hand, Dactyliosolen Castracane appears to be unrelated to 
the other rhizosolenioid diatoms with regards to its girdle 
structure (i.e. large pores, internal flanges – illustrated in Ha-
sle 1975).

During valve morphogenesis in P. alata, the proboscis in-
creases in length by anti-tip growth (i.e. it grows from the tip 
backwards), and eventually forms the valve (van de Meene 
& Pickett-Heaps 2002). The claspers are formed when the 
expanding (still unsilicified) conical valve comes into con-
tact with the silicified rigid tip of the sibling cell. At first the 
proboscis presses against the valve, creating an impression 
of the tip, then the valve produces flanges of silica around 
it to complete the claspers. This tip-clasper combination al-
lows sibling cells to be loosely filamentous (van de Meene & 
Pickett-Heaps 2002). The position of the slit (external part of 
the rimoportula) near the end of the tip suggests that its loca-
tion on a flattened centric valve would be equivalent to the 
annulus. During valve morphogenesis in R. setigera, growth 
occurs in two directions; distally to form the hollow, external 
portion of the rimoportula and backwards to form the conical 
valve. The extremely long spine-like rimoportula (150–250 
µm long) does not appear to touch the opposing valve, and 
so claspers are not formed and the sibling cells are either 
solitary or cluster together in parallel (somewhat similar to 
Bacillaria J.F.Gmel.) (van de Meene & Pickett-Heaps 2004). 
One presumes that those Rhizosolenia spp. that possess 
claspers (and otaria) follow a similar valve morphogenesis 
pathway to that of P. alata, while the valves of the solitary 
P. subarctica K.Takahashi, R.Jordan & Priddle follow that of 
R. setigera. 

Thus, the claspers are a direct consequence of the distal 
ends of valve extensions making an impression on the as yet 
unsilicified valves of sibling cells, and thus should not be re-
garded as homologous structures – although their appearance 
and function may be similar. It is also likely that numerous 
unrelated genera – e.g. Pyxilla Grev., Skeletonema Grev., and 
Hemiaulus Heib. (and other hemiauloids) – with long valve 
extensions use the same mechanism to create impressions or 
attachment structures on opposing valves. Furthermore, it 
is assumed that fossil Proboscia spp. and Rhizosolenia spp. 
with very long valve extensions (> 100 µm) were solitary be-
cause they lacked claspers.

The ultrastructure of the rimoportula also varies con-
siderably within the Rhizosoleniaceae s. lat. Externally, the 
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Figure 1 – SEM images of the internal and external rimoportula ultrastructure of selected rhizosolenioid taxa. Images taken with stage tilted 
to 30° angle and digitally rotated. Voucher numbers indicate DNA extraction associated with each strain, with more material available from 
author MPA. Material was broken with 1 mm glass bead in Beadbeater per methods in Ashworth et al. (2013) and Theriot et al. (2015); A–C, 
Proboscia spp. (DNA extraction vouchers HK300, HK236 and HK032, respectively); D & E, Rhizosolenia cf. setigera (DNA extraction 
vouchers HK032 and HK268, respectively); F, Rhizosolenia imbricata HK244; G, Rhizosolenia formosa HK354; H, Neocalyptrella robusta 
HK423. Scale bars = 1 µm.
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rimoportula of Proboscia species is a slit near the top of 
the valve, while internally it is formed of two adjacent thin 
sheets of silica extending from the interior of the tip, down 
the proboscis well past the external slit (fig. 1A–C). In the 
majority of the genera in the Rhizosoleniaceae, the external 
portion of the rimoportula is a conical tube, usually at the 
apex of the valve. Internally, the rimoportula of Rhizosole-
nia setigera-like species is a slit across a hemisphere at the 
base of the external spine, which can be across the side (fig. 
1D) or apex (fig. 1E) of the hemisphere. In the otaria-bearing 
Rhizosolenia spp. examined in this study, the rimoportula 
is a slit across the base of the external spine (fig. 1F & G), 
with a hyaline thickening around the slit. There appears to 
be some variation in the morphology of this thickening and 
the orientation of the slit relative to the otaria among taxa. 
In Neocalyptrella robusta (G.Norman ex Ralfs) Hernández-
Becerril & Meave del Castillo, the internal structure of the 
rimoportula is a laterally-compressed block, with triangular 
spines perpendicular to the rimoportula slit (fig. 1H).

The morphological and cytological features separating the 
genera in the Rhizosoleniaceae s. lat. are presented in table 1.

THE RHIZOSOLENIACEAE IS  
POLYPHYLETIC BY DNA DATA

According to Round et al. (1990) the Rhizosoleniales con-
sists of two families, the Rhizosoleniaceae and the Pyxillace-
ae, with the former including the following extant genera; 
Dactyliosolen, Guinardia, Proboscia, Pseudosolenia, Rhizo-
solenia, and Urosolenia. Since then, only Neocalyptrella 
Hern.-Becerril & Meave has been added (originally named 
“Calyptrella” Hern.-Becerril & Meave, the genus was later 
changed to Neocalyptrella due to the existing occupation of 
the genus Calyptrella Naudin in the botanical nomenclature 
– see Hernández-Becerril & Meave del Castillo 1997 for fur-
ther detail). However, the Rhizosoleniaceae is polyphyletic. 
In early 18S ribosomal RNA phylogenetic studies (Medlin et 
al. 2000, Medlin & Kaczmarska 2004), Proboscia occupies 
a lone branch among the radial centrics (“Clade 1”), which 
includes the Coscinodiscales, Aulacoseirales, Melosirales, 
Leptocylindrales, Corethrales, Paraliales and Rhizosoleni-
ales. However, Proboscia and Rhizosolenia are not closely 
related to each other, with the former either sister to the Cos-
cinodiscales, Melosirales and Aulacoseirales (Medlin et al. 
2000, Sorhannus 2004) or to “Clade 2” containing the rest of 
the diatom taxa (Medlin & Kaczmarska 2004), and the lat-
ter (plus Guinardia) sister to Corethron Castracane (Medlin 
et al. 2000, Medlin & Kaczmarska 2004). Increased taxon 
sampling and additional DNA markers have failed to bring 
Proboscia and Rhizosolenia together into a clade; three-gene 
analyses (adding the plastid-encoded rbcL and psbC markers 
to nuclear ribosomal SSU) place Proboscia either sister to 
all diatoms other than Corethron and Leptocylindrus Cleve 
(Ashworth et al. 2013) or sister to the Coscinodiscales (Na-
kov et al. 2014), while the addition of four more chloroplast 
markers saw Proboscia sister to the Melosirales (Theriot et 
al. 2015 – reproduced in fig. 2), which was also observed in a 
more recent 1151 taxon, 11-gene dataset (Nakov et al. 2018) 
and a phylogenetic analysis of orthologous markers from 
diatom transcriptomes (Parks et al. 2017). Furthermore, sev-

eral taxa currently in the Rhizosoleniaceae actually come out 
among the clades of Medlin & Kaczmarska’s (2004) Class 
Mediophyceae (found within the Subdivision Bacillariophy-
tina Medlin & Kaczmarska in their fig. 1, collapsed here for 
clarity) in molecular phylogenies. Dactyliosolen blavyanus 
(H.Perag.) Hasle and Neocalyptrella robusta have both con-
sistently been found in mediophycean clades; D. blavyanus 
in a clade with the Chaetocerotales and Hemiaulales (Ash-
worth et al. 2013, Nakov et al. 2014, 2018, Theriot et al. 
2015) and N. robusta either sister to all other mediophyte 
diatoms but Attheya T.West (Sinninghe Damsté et al. 2004) 
or in a clade with Biddulphia Gray and Attheya (Nakov et al. 
2018). Sequence data for Urosolenia also place it in the clade 
with the Chaetocerotales and Hemiaulales, sister to Acantho-
ceras Honigmann (Ashworth et al. 2013, Nakov et al. 2014, 
2018, Theriot et al. 2015), which has a frustule morphologi-
cally identical to the former genus but with two hollow, open 
processes (‘setae’) instead of one (Round et al. 1990). Like 
Chaetoceros Ehrenb., both Urosolenia and Acanthoceras are 
known to produce resting spores (Edlund & Stoermer 1993).

These differences in the earlier phylogenetic studies, to-
gether with key morphological features, led Nikolaev & Har-
wood (2000) to erect the Probosciaceae. However, validation 
of the new family name was carried out later by Jordan & 
Ligowski (2004), because there was no formal description in 
the original paper.

IS PROBOSCIA ALATA A SINGLE ENTITY  
OR A SPECIES COMPLEX?

In the old literature there are at least six forms or varieties 
of Rhizosolenia alata – R. alata f. alata, R. alata var. corpu-
lenta Cleve, R. alata f. genuina Gran, R. alata f. gracillima 
(Cleve) Grunow, R. alata f. indica H.Perag. and R. alata f. 
curvirostris Gran. The latter two have since been raised to 
species level, as Proboscia indica (H.Perag.) Hern.-Becerril 
and P. subarctica K.Takahashi, R.Jordan & Priddle, respec-
tively, while the others (except R. alata f. alata) were syn-
onymised with either the type species (P. alata) or with P. in-
dica. However, there are small morphological differences in 
P. alata valves from the Arctic, tropical and Southern Ocean 
that point towards two or more cryptic or pseudocryptic spe-
cies (compare specimens illustrated in Jordan et al. 1991, 
Takahashi et al. 1994, Jordan & Ligowski 2004) – notably, 
the length of the proboscis and degree of proboscis curva-
ture. Furthermore, regarding the copulae, there are several 
pores in the velum of tropical specimens, but only one in the 
velum of specimens from polar regions (Sundström 1986). 
Although there appear to be morphological differences in the 
winter valve probosces among the three Southern Ocean spe-
cies (see Jordan et al. 1991), this feature has not been well 
studied, but might prove to be another good taxonomic char-
acter. Finally, the auxospores of P. alata s. lat. are known 
to exhibit some differences, as the Southern Ocean form 
always has a bifurcated end (Jordan et al. 1991, Jordan & 
Ligowski 2004), while the one from northern waters seem-
ingly does not (e.g. see Lebour 1930, Cupp 1943). Indeed, 
the auxospores of other species also show some species-spe-
cific characters (compare P. alata with P. truncata (G.Karst.) 
Nöthig & Ligowski: Jordan & Ligowski 2004, 2006). Thus, 
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gene sequences of P. alata s. lat. specimens from around the 
world might help to distinguish these similar-looking forms.

FURTHER STUDIES IN THE RHIZOSOLENIACEAE?

While the ultrastructure of the rimoportula and patterns of 
valve morphogenesis help us to explain the molecular para-
phyly of the Rhizosoleniaceae with regard to Proboscia and 
Neocalyptrella, questions remain about rhizosolenioid evolu-
tion. There are certainly more data to be collected on rhizos-
olenioid taxa, though to understand the evolution of Probos-
cia in particular, other non-rhizosolenioid clades should be 
included in future studies. What ultrastructural and develop-
mental characters, if any, does Proboscia share with Eller-
beckia R.M.Crawford, Aulacoseira Thwaites and Melosira 
C.Agardh, with whom the genus shares a (poorly-supported, 

admittedly) molecular clade (fig. 2)? What characters, if any, 
does the genus share with Leptocylindrus Cleve and Core-
thron Castracane, which also have long pervalvar axes, but 
lack a rimoportula (Round et al. 1990)? What other fossil lin-
eages, such as Pyxilla discussed above, should be thoroughly 
documented by electron microscopy when looking for com-
mon ultrastructure?

Details on the ultrastructure of the auxospore and ini-
tial cell has been suggested as a source of key characters to 
understanding the phylogeny of diatoms (Medlin & Kacz-
marska 2004, Kaczmarska et al. 2013). However, can we re-
ally expect to observe the perizonial bands of the Bacillari-
ophytina clade, where we find Neocalyptrella, Dactyliosolen 
blavyanus, Acanthoceras and Urosolenia, when these taxa do 
not exhibit an elongation of the valve for which these bands 
allow? In fact, these “Bacillariophytinan rhizosolenioids” 

Figure 2 – Phylogenetic tree adapted from NEWICK-formatted trees in Theriot et al. (2015, supplementary files). Maximum likelihood 
tree based on a 7-gene dataset (nuclear-encoded ribosomal SSU, chloroplast-encoded rbcL, psaA, psaB, psbA, psbC, atpB markers) with 
bootstrap values from 1000 pseudoreplicates over the appropriate nodes. Rhizosolenioid taxa are highlighted, showing the family is not 
monophyletic with respect to Proboscia. The Bacillariophytina clade is collapsed in this figure for clarity.
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could provide a model to explore the molecular basis for ini-
tial cell development – closely-related, elongate taxa which 
do not express perizonial bands will transcribe genes for the 
development of those bands, while the rhizosolenioids would 
not. Comparing the transcriptomes of rhizosolenioid and 
elongate Bacillariophytinan taxa during auxosporulation and 
initial cell formation could reveal those genes. It would also 
be interesting to compare those results to other non-elongate 
Bacillariophytinan clades, such as the Thalassiosirales, to in-
vestigate whether the loss of elongate valves was facilitated 
by the molecular mechanisms in both groups. In this way, 
we can use the molecular paraphyly of the Rhizosoleniaceae 
as a map to guide investigations of molecular and genomic 
mechanisms of all diatoms.
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