Identity of the subalpine–subarctic corticioid fungus *Megalocystidium leucoxanthum* (Russulales, Basidiomycota) and six related species

Viacheslav Spirin¹⁺, Sergey Volobuev², Vera Malysheva², Otto Miettinen¹, Heikki Kotiranta¹ & Karl-Henrik Larsson⁴,⁵

¹Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
²Komarov Botanical Institute RAS, St Petersburg, Russia
³Finnish Environment Institute, Helsinki, Finland
⁴Natural History Museum, University of Oslo, Oslo, Norway
⁵Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
*Corresponding author: viacheslav.spirin@helsinki.fi

Background and aims – To date, *Megalocystidium leucoxanthum*, a corticioid fungus originally described from the Italian Alps, was considered as a widely distributed species inhabiting numerous angiosperm hosts in the northern hemisphere. Its specimens collected in different geographic areas and from various host species revealed a high morphological variability and thus obscured differences from the closely related *M. luridum*. The objective of this study was to re-establish *M. leucoxanthum* based on newly collected and sequenced specimens and clarify the identity of morphologically deviating collections previously ascribed to this species.

Material and methods – In total, 87 specimens of *Megalocystidium* spp. (including two historical types) were studied by morphological methods. Their phylogenetic relations were investigated based on DNA sequences (nrITS, nrLSU, and *tef1*) of 29 specimens.

Key results – Based on morphological, ecological and DNA data, we showed *M. leucoxanthum* sensu typi is a rare species restricted to *Alnus alnobetula* in subalpine and subarctic zones. Consequently, records from other hosts (mostly representatives of *Salicaceae*) belong to three other species, *M. olens*, *M. perticatum*, and *M. salicis*, described as new to science. The fourth newly introduced species, *M. pellitum*, occurs on the same host tree as *M. leucoxanthum* but it can be separated from the latter due to distinctive morphological traits and DNA sequences. Additionally, *Aleurodiscus diffissus* is combined in *Megalocystidium* and the identity of *M. luridum* is clarified.

Keywords – Basidiomycetes; molecular systematics; Russulales; subalpine communities; taxonomy.

INTRODUCTION

Megalocystidium Jülich is a genus of corticioid fungi typified with *Corticium leucoxanthum* Bres. Initially introduced for three species, *Megalocystidium* currently embraces ten species (Jülich 1978; Ginns & Freeman 1994). As redefined in phylogenetic studies, it belongs to the family Stereaceae of the Russulales and encompasses crust-like fungi with clamped hyphae, long and deeply rooted gleocystidia, as well as narrowly ellipsoid or cylindrical, smooth, strongly amyloid basidiospores (Larsson et al. 2004; Larsson 2007). The type species was described from the Italian Alps as growing on twigs of *Alnus alnobetula* subsp. *alnobetula* (= *Alnus viridis*) (Bresadola 1898).

Two European representatives of *Megalocystidium*, *M. leucoxanthum* (Bres.) Jülich, and *M. luridum* (Bres.) Jülich have been described in the literature as morphologically differentiated mainly due to the basidiospore length (above
Phylogenetic analyses

For this study, 30 nrITS, six nrLSU, and 24 tef1 sequences were generated. Additionally, four nrITS (containing ITS1, 5.8S, and ITS2 regions) and three nrLSU sequences of *Megalocystidium* spp. were retrieved from GenBank (table 1). We constructed four datasets: nrITS + nrLSU, nrITS, nrITS + tef1, and tef1 datasets. Sequences were aligned with the MAFFT v.7 web tool (http://mafft.cbrc.jp/alignment/server/) using the Q-INS-i option and adjusted manually.

Phylogenetic reconstructions were performed with Maximum Likelihood (ML) and Bayesian Inference (BI) analyses. Before the analyses, the best-fit substitution model for each alignment was estimated based on the Akaike Information Criterion (AIC) using the FindModel web server (http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html). The GTR model was chosen for all datasets. Maximum likelihood analysis was run on RAxML servers, v.0.9.0 (Kozlov et al. 2019) with 1000 rapid bootstrap replicates. Bayesian analyses was performed with MrBayes v.3.2.5 software (Ronquist et al. 2012), for two independent runs, each with 5 million generations, under described model, and four chains with sampling every 100 generations. To check for convergence of the MCMC analyses and to get estimates of the posterior distribution of parameter values, Tracer v.1.6 was used (Rambaut et al. 2014). We accepted the result where the ESS (Effective Sample Size) was >9782 for nrITS dataset, 11435 for nrITS + nrLSU dataset, 11303 for nrITS + tef1 dataset, and 14736 for tef1 dataset, and the PSRF (Potential Scale Reduction Factor) was close to 1.

Newly generated sequences have been deposited in GenBank with corresponding accession numbers (table 1). Sequenced specimens are marked in the Taxonomic Treatment by an asterisk.

RESULTS

Phylogeny

Four datasets were prepared and analyzed for the present study: (1) nrITS + nrLSU dataset for the family Stereaceae (Russulales), (2) nrITS only dataset, (3) tef1 only dataset, and (4) combined nrITS + tef1 dataset for defining species limits in the *Megalocystidium leucoxanthum* complex.

(1) nrITS + nrLSU dataset for ten genera accepted in Stereaceae (as outlined by Larsson et al. 2004 and Larsson 2007). The final alignment contained 1696 characters (including gaps). The overall topologies of the ML and BI trees were identical and recovered *Aleurodiscus diffissus* (Sacc.) Burt as a member of a strongly supported *Megalocystidium* clade (BS = 99, PP = 1) (fig. 1). The latter species was first introduced as *Peniophora diffissa* (Saccardo 1889) and then moved to *Aleurodiscus* due to the presence of acanthophyses, sterile hymenial cells with characteristic thorn-like outgrowths. However, this feature alone is not enough for justifying generic limits in Stereaceae because acanthophyses have been detected in almost all other genera of this family. Otherwise, *A. diffissus* is microscopically highly similar to *M. leucoxanthum* and *M. luridum*, and therefore we combine it in *Megalocystidium*.
Table 1 – Sequences of *Megalocystidium* spp. used in the present study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Specimen (herbarium) / culture</th>
<th>Origin (ISO 3166 code)</th>
<th>Host</th>
<th>GenBank numbers</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. diffissum</td>
<td>Spirin 4244 (H)</td>
<td>RU-KHA</td>
<td>Rhododendron dauricum</td>
<td>MT477147</td>
<td>this study</td>
</tr>
<tr>
<td>M. diffissum</td>
<td>Spirin 5603 (H)</td>
<td>RU-KHA</td>
<td>R. dauricum</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. leucoxanthum</td>
<td>Boidin 1088 / CBS 269.54</td>
<td>FR</td>
<td>Alnus alnobetula subsp. alnobetula</td>
<td>MH868866</td>
<td>Vu et al. (2019)</td>
</tr>
<tr>
<td>M. leucoxanthum</td>
<td>Kotiranta 13164 (H)</td>
<td>IT</td>
<td>A. alnobetula subsp. alnobetula</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. leucoxanthum</td>
<td>Spirin 7601 (H)</td>
<td>RU-KHA</td>
<td>A. alnobetula subsp. fruticosa</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. leucoxanthum</td>
<td>Kotiranta 26429a (H)</td>
<td>RU-KRA</td>
<td>Alnus hirsuta</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. leucoxanthum</td>
<td>Spirin 13963 (H)</td>
<td>SI</td>
<td>A. alnobetula subsp. alnobetula</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. luridum</td>
<td>Boidin 771 / CBS 270.54</td>
<td>FR</td>
<td>–</td>
<td>MH868867</td>
<td>Vu et al. (2019)</td>
</tr>
<tr>
<td>M. luridum</td>
<td>Marstad 16/15 (O)</td>
<td>NO</td>
<td>hardwood</td>
<td>MT477150</td>
<td>this study</td>
</tr>
<tr>
<td>M. luridum</td>
<td>Marstad 71/14 (O)</td>
<td>NO</td>
<td>hardwood</td>
<td>MT477149</td>
<td>this study</td>
</tr>
<tr>
<td>M. luridum</td>
<td>Stalpers 161 / CBS 106.71</td>
<td>DE</td>
<td>Quercus sp.</td>
<td>–</td>
<td>Vu et al. (2019)</td>
</tr>
<tr>
<td>M. olens</td>
<td>Stalpers 1155 / CBS 454.86</td>
<td>BE</td>
<td>Alnus / Corylus</td>
<td>MH873677</td>
<td>Vu et al. (2019)</td>
</tr>
<tr>
<td>M. olens</td>
<td>Miettinen 14695.4 (H)</td>
<td>FI</td>
<td>Salix caprea</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. olens</td>
<td>Spirin 12456 (O)</td>
<td>NO</td>
<td>Populus tremula</td>
<td>MT477152</td>
<td>this study</td>
</tr>
<tr>
<td>M. olens</td>
<td>Spirin 4701 (H)</td>
<td>RU-NIZ</td>
<td>Salix caprea</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. olens</td>
<td>Spirin 10652 (H)</td>
<td>RU-NIZ</td>
<td>Salix caprea</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. olens</td>
<td>Spirin 11299 (H)</td>
<td>RU-NIZ</td>
<td>Betula pendula</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. olens</td>
<td>Spirin 11976 (H)</td>
<td>RU-NIZ</td>
<td>Acer platanoides</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. olens</td>
<td>Volobuev s.n. (LE286917)</td>
<td>RU-ORL</td>
<td>A. platanoides</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. pellitum</td>
<td>Kotiranta 26023 (H)</td>
<td>RU-KRA</td>
<td>A. hirsuta</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. pellitum</td>
<td>Spirin 7574 (H)</td>
<td>RU-KHA</td>
<td>A. alnobetula subsp. fruticosa</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. perticatum</td>
<td>Kotiranta 26667 (H)</td>
<td>RU-TY</td>
<td>Salix sp.</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. perticatum</td>
<td>Spirin 5474 (H)</td>
<td>RU-KHA</td>
<td>Salix schweinii</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. perticatum</td>
<td>Spirin 11880 (H)</td>
<td>RU-LEN</td>
<td>Salix caprea</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Kajla 1/03 (OULU)</td>
<td>FI</td>
<td>Salix sp.</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Gabrielsen 10.VIII.2018 (O)</td>
<td>NO</td>
<td>Salix sp.</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Ryvarden 50314 (O)</td>
<td>NO</td>
<td>Betula tortuosa</td>
<td>MT477148</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Spirin 12098 (O)</td>
<td>NO</td>
<td>Salix nigricans</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Spirin 10093 (H)</td>
<td>RU-LEN</td>
<td>Salix myrsinifolia</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Spirin 10137 (H)</td>
<td>RU-LEN</td>
<td>P. tremula</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Spirin 11883 (H)</td>
<td>RU-LEN</td>
<td>Salix caprea</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Spirin 11933 (H)</td>
<td>RU-LEN</td>
<td>Salix caprea</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Spirin 6512 (H)</td>
<td>RU-PRI</td>
<td>Salix carioaphylla</td>
<td>–</td>
<td>this study</td>
</tr>
<tr>
<td>M. salicis</td>
<td>Westerberg 6.XI.2017 (GB)</td>
<td>SE</td>
<td>Salix sp.</td>
<td>MT477151</td>
<td>this study</td>
</tr>
</tbody>
</table>
Figure 1 – Combined phylogenetic nrITS + nrLSU topology from Bayesian Inference showing main lineages within Stereaceae. GenBank accession numbers (or collection numbers of newly sequenced specimens) are given for all sequences. Support values (PP/BS) are given above the branches. Scale bar shows expected changes per site.

Figure 2 – Phylogenetic nrITS topology from Bayesian Inference showing main lineages within the *Megalocyctidium* clade. Collection numbers of newly sequenced specimens are given for all sequences. Support values (PP/BS) are given above the branches. Scale bar shows expected changes per site.
Figure 3 – Phylogenetic *tef1* topology from Bayesian Inference showing main lineages within the *Megalocystidium* clade. Collection numbers of newly sequenced specimens are given for all sequences. Support values (PP/BS) are given above the branches. Scale bar shows expected changes per site.

Figure 4 – Combined phylogenetic nrITS + *tef1* topology from Bayesian Inference showing main lineages within the *Megalocystidium* clade. Collection numbers of newly sequenced specimens are given for all sequences. Support values (PP/BS) are given above the branches. Scale bar shows expected changes per site.
(2) ITS only dataset for Megalocystidium spp. The final alignment contained 776 characters (including gaps). The overall topologies of the ML and BI trees clearly divided all included specimens in two strongly supported groups, i.e. Megalocystidium diffissum clade and M. leucoxanthum–luridum clade. Within the latter one, two strongly supported lineages corresponding to M. leucoxanthum s.s. (i.e. containing Alnus-dwelling specimens from subalpine or subarctic areas) and M. luridum were detected (fig. 2). However, the rest of ITS sequences derived mainly from specimens collected from Salix spp. do not group into well-supported clades. Morphological and genetic variability of this lineage prompted us to use one more marker (tef1).

(3) tef1 only dataset for Megalocystidium spp. The final alignment contained 595 characters (including gaps). The overall topologies of the ML and BI trees were identical. They split the aforementioned M. leucoxanthum–luridum clade into six strongly supported lineages that we taxonomically interpret as separate species (fig. 3). This interpretation is supported by morphological (both macroscopic and anatomical), ecological (host specificity) and, to some degree, geographic data as discussed below. Four of these species (M. olens, M. pellitum, M. perticatum, and M. salicis) are described as new to science.

(4) combined nrITS + tef1 dataset for Megalocystidium spp. The final alignment contained 1371 characters (including gaps). The overall topologies of the ML and BI trees were identical and they support our conclusions based on tef1 only dataset (fig. 4).

Morphology, ecology, and geography

In the M. leucoxanthum–luridum complex, only one species, M. luridum, can without doubt be identified based on the single character, i.e. short basidiospores. Recognizing the other five species requires exact information about host tree species and meticulous morphological study. Two species presented below, M. leucoxanthum s.s. and M. pellitum, occur exclusively on wood of A. alnobetula in mountains and subarctic areas of Eurasia and subarctic zone of North-East Asia and North America – only exceptions in our material are one record for each species from A. hirsuta in Siberia. They possess rather thick basidiocarps with a well-developed subiculum, and long basidiospores when compared with other species in the complex. The three remaining species prefer to grow on wood of Salicaceae. Of them, M. olens produces insignificant, soft basidiocarps with a few gloeocystidia in the hymenial layer, and it certainly has a southern distribution (supplementary file 1). In turn, M. perticatum and M. salicis occur mainly in areas with cooler climate; they have more prominent and compact fructifications with easily detectable gloeocystidia, and they can be separated due to different basidiospore length.

TAXONOMIC TREATMENT

MB838476

Aleurodiscus sajanensis Murashk. ex Pilát (Pilát 1931: 328) – Type: RUSSIA • ‘Sayany’; Rhododendron dauricum; 11 Jul. 1927; Murashkinsky; holotype: PRM[PRM 650773].

Description – Basidiocarps perennial, resupinate, pulvinate-frutulate, gregarious, 1.5–4 mm in diam., 0.2–0.5 mm thick, tough. Margin abruptly delimited from the substrate, elevated, fuscous to black. Hymenial surface first cream-coloured or beige, later ochraceous to brownish, in senescent basidiocarps dark brown, in young basidiocarps more or less even, in older ones irregularly cracking and tuberculare. Hyphal structure monomitic; hyphae clamped, thin-to moderately thick-walled, 3.5–5 μm in diam., slightly dextrinoid. Gloeocystidia clavate to moniliform, thin-to distinctly thick-walled, 56–95 × 6–9.5 μm. Acanthophyses numerous, clavate, subulate to bottle-shaped, in upper part with abundant acute protuberances, thin-to moderately thick-walled, 43–68 × 6–10.5 μm (n = 10/1), slightly dextrinoid. Basidia clavate, 75–100 × 7–10 μm. Basidiospores hyaline, thin-walled, cylindrical, (12.3–)12.8–18.2(–18.4) × (4.5–)4.7–7.0(–7.3) μm (n = 90/3), L = 14.60–15.06, W = 5.56–5.68, Q = 2.64–2.68.

Distribution – Asia (Siberia, Russian Far East) (supplementary file 1).

Habitat and ecology – Dead, corticated, usually still attached branches of Rhododendron dauricum.

Notes – Saccardo (1889) described this species as Peniophora diffissae based on a single specimen collected by Nikolai Martiyanov in Siberia, seemingly in the present-day Krasnoyarsk Region. The collection was evidently sterile but its identity is doubtless due to the peculiar basidiocarp shape, presence of acaenophyses, and the specific host (Rhododendron dauricum). We could not trace any authentic material of P. diffissae in public herbaria, and therefore we select Saccardo’s illustration as a lectotype of this species. The holotype of Aleurodiscus sajanensis (Pilát 1931) was collected in the same geographic area as P. diffissae and agrees perfectly with the protologue of the latter species and our newly collected specimens.

Megalocystidium diffissum is one of the most common species inhabiting dead but still attached branches of Rhododendron dauricum in the mountain regions of East Asia. Its basidiocarps die soon after branches are detached.
It usually grows together with *Hymenochaete sphaericola* Lloyd, another primary decomposer of the *Rhododendron* wood. No verified records of *M. diffusum* exist from other hosts, and the identity of the North American collections so labelled deserve a closer study.

Megalocystidium leucoxanthum (Bres.) Jülich (Jülich 1978: 140) (figs 5–7) – Type: ITALY – Trentino – Alto Adige • Pejo; ‘*Alnus viridis*’ [= *Alnus alnobetula subsp. alnobetula*]; Aug. 1892; Bresadola s.n.; lectotype: S[S F367903], designated here; islectotype: GB (MBT395621).

Description – Basidiocarps annual or persistent, resupinate, first orbicular or fruticulate, then fusing and producing crustaceous fructifications, 0.5–10 cm in widest dimension, 0.3–1 mm thick, leathery. Margin abruptly delimited from the substrate, adnate, 0.5–1 mm wide, first white, in older basidiocarps concolorous with the hymenial surface. Subiculum white, leathery, 0.1–0.2 mm thick. Hymenial surface cream-coloured to beige or ochraceous-brownish, often distinctly tuberculate, irregularly cracking with age. Smell weak, anise-like, or absent. Hyphal structure monomitic; hyphae clamped, 4–5(–5.5) μm in diam., thin-to moderately thick-walled in subhymenium, thick-walled (wall up to 2 μm thick) in subiculum. Gloeocystidia usually moniliform, rarely clavate, thin- to clearly thick-walled, 60–120 × 7–8.5 μm. Hyphidia simple or bi- or trifurcate, rare, embedded in or slightly projecting above the hymenial layer, 4.5–5.5 μm in diam. Basidia clavate, 45–68 × 8–11 μm. Basidiospores hyaline, thin-walled, cylindrical to narrowly ellipsoid, (12.8–)13.1–18.1(–18.2) × (4.7–)4.9–7.2(–8.0) μm (n = 120/4), L = 14.54–16.81, W = 5.66–6.51, Q = 2.47–2.61.

Distribution – Europe (Austria, France, Italy, Liechtenstein, Slovenia, Switzerland), Asia (Siberia, Russian Far East), North America (Canada) (supplementary file 1).

Habitat and ecology – Dead, corticated, usually still attached branches of *Alnus alnobetula* (once found on *Alnus hirsuta*) in subalpine or subarctic communities.

Additional material examined – AUSTRIA – Tyrol • Stubai Alpen; *A. alnobetula subsp. alnobetula*; Litschauer (Kryptogamie Exsiccate #3009); H.

CANADA – Newfoundland and Labrador • Newfoundland, White Bay; *A. alnobetula subsp. crispa*; 8 Sep. 2011; Ryvarden 48774; O[O F505487]. – Quebec • Nunavik, Poste-de-la-Baleine; *A. alnobetula subsp. crispa*; 23 Jul. 1982; Niemelä 2513, 2516; H • Nunavik, Poste-de-la-Baleine; *A. alnobetula subsp. crispa*; 12 Aug. 1982; Niemelä 2754; H.

ITALY – Trentino – Alto Adige • Trento; *A. alnobetula subsp. alnobetula*; Aug. 1895; Bresadola s.n.; H • Trento, Bolzano; *A. alnobetula subsp. alnobetula*; 10 Sep. 1997; Kotiranta 13164*; H.

LIECHTENSTEIN – Triesen • Lawena; deciduous tree (fallen twig); Aug. 1980; Waldburger s.n.; O[O F903111].

SLOVENIA – Gorenjska • Krna, Lipanca; *A. alnobetula subsp. alnobetula*; 6 Jun. 2019; Grebenc & Spirin 12637; H • Krna, Lipanca; *A. alnobetula subsp. alnobetula*; 29 Jul. 2020; Spirin 13963*; H.

SWITZERLAND – Schwyz • Rigi; 3 Feb. 1979; Baici; O[O F903112].

Notes – According to our results, *M. leucoxanthum* is a species inhabiting dead, often still attached branches of *A. alnobetula* in subalpine and subarctic zones. It was found once on *A. hirsuta* but this record comes from an area where *A. alnobetula* is present, too. We interpret this finding as an accidental host change. Macroscopically, *M. leucoxanthum* is indistinguishable from *M. pellitum* but the latter species can be easily recognized due to clearly larger basidia and wider basidiospores. Microscopically, *M. leucoxanthum* is almost identical to *M. perticatum*. However, *M. perticatum* produces thinner basidiocarps with an indistinct subicular layer and it occurs on *Salix* spp.

Eriksson (in Eriksson & Ryvarden 1975) studied and depicted original material from the Bresadola collection at S but did not give any details on the specimen. From a fragment preserved in GB we know that the specimen Eriksson studied and called type specimen is the one we here select as lectotype. Ginns & Freeman (1994) referred to another specimen from herb S as the type but a specimen with the label information they reported (“Italy: Alpes, viii.1894, G. Bresadola s.n.”) does not exist in S, neither in FH where an isotype should be stored according to them. It is not possible to decide what material Ginns & Freeman studied and we therefore regard their selected type as lost.

Megalocystidium luridum (Bres.) Jülich (Jülich 1978: 140) – Type: ITALY – Tuscany • Florence; hardwood; 1892; Martelli s.n.; lectotype: S[S F119263], designated by Burt (1926: 272).

Description – Basidiocarps annual or persistent, resupinate, crustaceous, up to 10 cm in widest dimension, 0.1–0.5 mm thick, compact. Margin abruptly delimited from the substrate, adnate, up to 0.5 mm wide, first white, in older basidiocarps concolorous with hymenial surface. Hymenial surface first cream-coloured to beige, smooth, then pale ochraceous to light brownish, tuberculate, sometimes irregularly cracking. No specific smell. Hyphal structure monomitic; hyphae clamped, 2–3.5 μm in diam., thin- to moderately thick-walled throughout. Gloeocystidia usually gradually tapering, rarely clavate, sometimes moniliform, thin- to slightly thick-walled, 57–112 × 7–14.5(–18) μm. Hyphidia simple or bi- or trifurcate, rare, embedded in or slightly projecting above hymenial layer, 1.5–2 μm in diam. Basidial clavate, 35–57 × 238
6.5–9 μm. Basidiospores hyaline, thin-walled, cylindrical to ellipsoidal, (7.0–)7.1–10.6–(10.7) × (3.9–)4.0–6.1–(6.2) μm (n = 150/5), L = 8.41–9.07, W = 4.56–5.35, Q = 1.61–1.85.

Distribution – Europe (France, Germany, Italy, Norway, Spain) (supplementary file 1).

Habitat and ecology – Dead wood of deciduous trees in temperate forests.

Additional material examined – FRANCE • Prunus spinosa; Letendre 2029 (herb. Karsten 1639, as Xerocarpus letendrei); H.

Notes – Megalocystidium olenis Spirin & Volobuev, sp. nov. (figs 5–7) – Type: RUSSIA – Nizhny Novgorod Region • Lukoyanov Dist., Razino; 54.9105°N, 44.2896°E; Betula pendula (fallen corticated branch); 31 Jul. 2017; Spirin 11299*; holotype: H[H7009380].

Megalocystidium olens Spirin & Volobuev, sp. nov. (figs 5–7) – Type: RUSSIA – Nizhny Novgorod Region • Lukoyanov Dist., Razino; 54.9105°N, 44.2896°E; Betula pendula (fallen corticated branch); 31 Jul. 2017; Spirin 11299*; holotype: H[H7009380].

Megalocystidium pendula Spirin & Ryvarden (1975) – Differs from M. leucoxanthum in having small-sized, soft basidiocarps, rare gloeocystidia and on average shorter basidiospores 12–16 × 4.5–7.5 μm.

Description – Basidiocarps annual or persistent, resupinate, first orbicular or frutulate, gregarious, a few mm in diam., then fusing to a continuous basidiocarp, membranous, a few cm in widest dimension, 0.3–1 mm thick, soft. Margin adnate, up to 0.5 mm wide, first white, arachnoid, in older basidiocarps compact and more or less concolorous with hymenial surface. Hymenial surface first cream-coloured to beige, smooth, then ochraceous to light reddish-brownish, smooth or indistinctly tuberculate, sometimes irregularly cracking. A distinct anise-like smell always present. Hyphal structure monomitic, clamps present; subicular hyphae loosely interwoven, with thickened walls, 3–5 μm in diam., subhymenial hyphae thin- or only slightly thick-walled, rather loosely arranged and well visible, 2.5–4.5 μm in diam. Gloeocystidia rather rare, normally embedded in the hymenial layer and thus poorly visible, gradually tapering or clavate, some moniliform, occasionally pleural, thin- to slightly thick-walled, 44–119 × (6.5–)7.0–13.5(–14) μm. Hyphidia simple or bi- to trifurcated, rare, embedded in the hymenial layer, 2–4 μm in diam. Basidia clavate, 35–79 × 7.5–11 μm. Basidiospores hyaline, thin-walled, cylindrical, (11.1–)11.8–15.8–(15.9) × (4.2–)4.4–7.7–(8.0) μm (n = 120/4), L = 12.81–14.59, W = 5.32–6.48, Q = 2.11–2.64.

Habitat and ecology – Dead, still attached or just fallen branches of various deciduous trees in temperate–hemiboreal forests.

Etymology – olenis (Latin, adj.) – smelling, in reference to a distinct anise-like odour of basidiocarps.

Additional material examined – FINLAND – Uusimaa • Helsinki, Veräjämäki; Salix caprea; 5 Sep. 2011; Mietinnen 14695.4*; H.

Notes – Megalocystidium olens produces small-sized, orbicular, gregarious basidiocarps later fusing but rarely exceeding one cm in widest dimension. Insignificant, soft, pale-coloured fructifications with a strong pleasant smell allow an identification already in the field. The species often occurs on thin, corticated, still attached branches of various deciduous trees (Acer, Betula, Corylus, Populus, Salix), and it seems to be restricted to nemoral and hemiboreal forests of Europe.

Megalocystidium pellitum Spirin & Kotiranta, sp. nov. (figs 5–7) – Type: RUSSIA – Khabarovsk Region • Verkhnebureinskyi Dist., Dublikan Nat. Res.; 50.5173°N, 133.2551°E; Alnus alnobetula subsp. fruticosa (dead still attached branch); 19 Aug. 2014; Spirin 7574*; holotype: H[H7009381]; isotype: LE.

Megalocystidium pendula – Differs from M. leucoxanthum in having longer and wider basidiospores 12–21 × 8–12 μm.

Description – Basidiocarps persistent, resupinate, crustaceous, 5–40 mm in diam., 0.5–1 mm thick, leathery. Margin abruptly delimited from the substrate, adnate, 0.5–1 mm wide, first white, in older basidiocarps brownish to almost black. Subiculum white, leathery, 0.1–0.3 mm thick. Hymenial surface cream-coloured to beige or pale ochraceous, smooth or tuberculate, irregularly cracking with age. Young basidiocarps with faint pleasant smell, disappearing in herbarium specimens. Hyphal structure monomitic; hyphae clamped, 4–5(–5.5) μm in diam., thin- to moderately thick-walled in subhymenium, thick-walled (wall up to 2 μm thick) in subiculum. Gloeocystidia usually moniliform, rarely clavate, thin- to clearly thick-walled, 60–120 × 7–8.5 μm. Hyphidia simple or bi- to trifurcated, rare, embedded in or slightly projecting above hymenial layer, 4–5.5 μm in diam. Basidia clavate, 59–104 × 11–16.5 μm. Basidiospores hyaline, thin-walled, ellipsoid to cylindrical, (10.1–)12.3–20.8–(22.9) × (7.7–)8.0–11.8(–12.2) μm (n = 120/4), L = 14.82–18.59, W = 8.78–10.28, Q = 1.58–1.83.

Distribution – Europe (Belgium, Finland, Norway, Russia) (supplementary file 1).
Habitat and ecology – Dead, corticated, usually still attached branches of *A. alnobetula* (once found on *A. hirsuta*) in subalpine or subarctic communities.

Etymology – *pellitus* (Latin, adj.) – leathery; referring to the basidiocarp consistency.

Additional material examined – CANADA – Quebec • Nunavik, Poste-de-la-Baleine; *A. alnobetula* subsp. *crispa*; 23 Jul. 1982; Niemelä 2607; H.

Notes – *Megalocystidium pellitum* is macroscopically identical to *M. leucoxanthum* and has the same host preferences (growing on *A. alnobetula* and exceptionally also on *A. hirsuta*). However, it is a much rarer species distributed in Asia and North America. Microscopically, *M. pellitum* can be easily identified due to the large basidia and basidiospores.

Megalocystidium perticatum Spirin & Volobuev, sp. nov. (figs 5–7) – Type: RUSSIA – Leningrad Region • Boksitogorsk Dist., Goryun; 59.251°N, 34.933°E; *Salix caprea* (dead corticated stem); 9 May 2018; Spirin 11880*; holotype: H[H7009383]; isotype: LE. MB838474

Diagnosis – Differs from *M. leucoxanthum* in having smooth, thin, tough basidiocarps and different host preferences (occurring on *Salicaceae*).

Description – Basidiocarps persistent, resupinate, crustaceous, a few cm in widest dimension, 0.1–0.3 mm thick, tough. Margin adnate, up to 0.5 mm wide, first whitish, pruinose, in older basidiocarps compact and more or less concolorous with hymenial surface. Hymenial surface first cream-coloured to beige, then pale ochraceous, smooth or indistinctly tuberculate, sometimes irregularly cracking. Smell anise-like, often faint, or absent. Hyphal structure monomitic, clamps present; subicular hyphae tightly interwoven or subparallel, with thickened walls, 3–5 μm in diam., subhymenial hyphae thin- or slightly thick-walled.

rather tightly arranged, 2.5–4 μm in diam. Gloeocystidia abundant, embedded in or slightly projecting above hymenial layer, moniliform, with 2–3 clear constrictions at the apical part, more rarely tapering-fusiform, predominantly thin-walled, 65–150 × (7.0–)7.5–12–(14) μm. Hyphidia simple or rarely bi- to trifurcate, rare, embedded in hymenial layer, 2–3 μm in diam. Basidia clavate, 55–75 × 7–12 μm. Basidiocarps hypaline, thin-walled, cylindrical, occasionally fusiform, (11.0–)11.2–19.2–(19.8) × (4.2–)4.3–7.6–(7.8) μm (n = 150/5), L = 13.72–15.70, W = 5.38–6.31, Q = 2.37–2.83.

Distribution – Europe (Finland, Russia), Asia (Siberia, Russian Far East) (supplementary file 1).

Habitat and ecology – Dead, corticated stems or still attached branches of *Salix* spp. (once found on *P. tremula*) in hemiboreal – boreal forests.

Etymology – perticatum (Latin, adj.) – growing on sticks.

Additional material examined – FINLAND – Kainuu • Suomussalmi, Juntasranta; *P. tremula*; 11 Nov. 1996; Möttönen s.n.; [H][H6055359].

RUSSIA – Khabarovsk Region • Khabarovsk Dist., Levyi Ulun; *Salix schwerinii*; 21 Aug. 2012; Spirin 5474*; H. – Leningrad Region • Boksitogorsk Dist., Radogoshch; *Salix cinerea*; 20 Aug. 2018; Spirin 12198; H. – Tuva • Erzin; *Salix* sp.; 14 Aug. 2014; Kotiranta 26667*; H.

Notes – *Megalocystidium perticatum* is morphologically most similar to *M. salicis*, and it differs from the latter species mainly by thinner basidiocarps with smooth hymenial surface and longer basidiocarps. However, senescent individuals of *M. salicis* may produce basidiocarps with an average length almost approaching the lowermost limit of the average length in *M. perticatum*. In these critical cases, attention should be paid to macroscopic traits. The old basidiocarps of *M. salicis*, with basidiocarps longer than average, are 1–2 mm thick, clearly tuberculate, strongly rimose, and with reddish or reddish-brownish colours. In turn, *M. perticatum* (even when old) has clearly thinner and paler, almost smooth basidiocarps. It seems that *M. perticatum* is much rarer than *M. salicis*, and it is reported here from North Europe (Finland and North-West Russia), Siberia and Russian Far East. It inhabits dead, still corticated branches and stems of *Salix* spp.

Megalocystidium salicis Spirin, Miettinen & K.H.Larss., sp. nov. (figs 5–7) – Type: RUSSIA – Leningrad Region • Podporozhie Dist., Vazhinka; 61.1426°N, 33.9958°E; 22 Aug. 2011; Spirin 10093*; holotype: H[H7009382]; isotype: LE.

MB838475

Diagnosis – Differs from *M. leucoxanthum* in having tough, occasionally tuberculate basidiocarps and on average shorter basidiocarpes 10–16 × 4–7 μm, as well as different host preferences (occurring on Salicaceae).

Description – Basidiocarps persistent, resupinate, crustaceous, a few cm in widest dimension, 0.1–2 mm thick, rather tough, sometimes gelatinized. Margin adnate, up to 1 mm wide in mature basidiocarps, whitish or cream-coloured, compact. Hymenial surface first cream-coloured to greyish, sometimes with bluish tints, smooth, then pale to brownish-yellow, tuberculate, in senescent basidiocarps reddish, occasionally with brownish tints, tuberculate, strongly cracking. Distinct anise-like smell often present in mature or senescent, deep-coloured basidiocarps. Hyphal structure monomitic, clamps present; subicular hyphae tightly interwoven, with thickened walls, 3–5 μm in diam., subhymenial hyphae thin- or slightly thick-walled, tightly glued together, 2–4 μm in diam. Gloeocystidia present but usually rather rare, embedded in or slightly projecting above hymenial layer, tapering-fusiform or clavate, often with an apical schizopapilla, sometimes slightly moniliform, with 2–3 indistinct constrictions along the whole length, in senescent basidiocarps distinctly moniliform, with 2–5 constrictions at the apical part, thin- to clearly thick-walled (walls up to 2 μm thick), 48–110 × (6.5–)7–13–(14) μm. Hyphidia simple or rarely bi- to trifurcate, rare, embedded in hymenial layer, 2–3 μm in diam. Basidia clavate, 45–75 × 7.5–12 μm. Basidiocarps hypaline, thin-walled, cylindrical to narrowly ellipsoid, (10.1–)10.2–16.0–(16.8) × (4.1–)4.2–7.2–(7.7) μm (n = 300/10), L = 11.16–13.55, W = 4.87–6.30, Q = 2.00–2.52.

Distribution – Europe (Finland, Norway, Russia, Sweden), Asia (Siberia, Russian Far East) (supplementary file 1).

Habitat and ecology – Dead, usually corticated branches or small-sized, fallen logs of *Salix* spp. and *P. tremula* in hemiboreal–boreal forests, rarely on other angiosperms.

Etymology – salicis (Latin, adj.) – referring to the growth on wood of Salicaceae.

Additional material examined – FINLAND – Varsinais-Suomi • Turku, Ruissalo; *C. avellana*; 26 Aug. 1965; Laine s.n.; H. – Uusimaa • Helsinki, Toukola, Syyriankatu; *Philadelphus coronarius*; 3 Aug. 2002; Saarenoksa 00202; H • Helsinki, Veräjämäki; *P. tremula*; 19 Sep. 2011; Miettinen 14920.2; H. – Etelä-Häme • Hämeenlinna, Sudenpesänkangas; *Salix* sp.; 26 Sep. 2014; Spirin 8104; H. – Kainuu • Kuhmo, Teerisuo – Losonsuo; *P. tremula*; 9 Sep. 1990; Penttilä 1710b; H. – Oulun Pohjanmaa • Oulu, Selkäkari; *Salix* sp.; 22 Feb. 2003; Kujala 1/03*; OULU[OULU29013].

NORWAY – Finnmark • Kautokeino, Øvre Anárjokha Nat. Park; *Betula tortuosa*; 24 Aug. 2017; Ryvarden 50314*; O • Porsanger, Stabbursdalen Nat. Res.; *Salix phyllicifolia*; 10 Aug. 2018; Spirin 12095; O; H • Porsanger, Čādjejohka; *Salix nigricans*; 11 Aug. 2018; Spirin 12098*; O; H • Porsanger, Snekkernes; *Salix* sp.; 10 Aug. 2018; Gabrielsen et al. s.n.*; O.

RUSSIA – Khakassia • Abakan, Ergaki; *Salix viminalis*; 15 Aug. 2011; Kotiranta 25180; H. – Leningrad Region • Boksitogorsk Dist., Ostrechka; *P. tremula*; 18 Aug. 2018; Spirin 12164; H • Boksitogorsk Dist., Kolp*; *Salix myrsinifolia*; 9 May 2016; Spirin 10093*; H • Boksitogorsk Dist., Goryun; *S. caprea*; 9 May 2018; Spirin 11883*; H • Boksitogorsk Dist., Radogoshch; *S. caprea*; 20 Aug. 2018; Spirin 12196; H • Podporozhie Dist., Oksozero; *P. tremula*; 3 Jun. 2018; Spirin 11928*; H • Podporozhie Dist., Oksozero; *S. caprea*; 3 Jun. 2018; Spirin 11933*; H • Podporozhie Dist., Vazhinka; *S. caprea*; 27 May 2017; Spirin 11218*; H. – Nizhny Novgorod Region • Tonshaev Dist., Okhtarskoe;
Key for the *M. leucoxanthum* complex in temperate–boreal Eurasia

1. Subicular layer of basidiocarps distinct (approximately of the same thickness as hymenial layer), white. On *Alnus* spp. in subalpine or subarctic zones ... 2

1'. Subicular layer thin or indistinct. On various hosts except *Alnus* spp. ... 3

2. Basidiospores 12.5–21 × 8–12 μm, W = 8.8–10.3. East Asia and North America

...

M. pellitum Spirin & Kotiranta

2'. Basidiospores 13–18 × 5–7 μm, W = 5.7–6.5. Holarctic species *M. leucoxanthum* (Bres.) Jülich

3. Basidiospores broadly cylindrical to ellipsoid, 7–10.5 × 4–6 μm, L = 8.4–9.1. Temperate European species ...

...

M. luridum (Bres.) Jülich

3'. Basidiospores cylindrical to broadly cylindrical, L > 10 ... 4

4. Basidiocarps membranous, soft, always with a strong anise-like smell. Gloeocystidia embedded, rare and poorly visible. Temperate European species *M. olens* Spirin & Volobuev

4'. Basidiocarps crustaceous, tough, anise-like smell present only in thick and deeply coloured basidiocarps. Gloeocystidia abundant or rare, at least some cystidia projecting. Hemiboreal–boreal Eurasian species 5

...

M. salicis Spirin, Miettinen & K.H.Larss.

5'. Smell faint or absent. Basidiospores 12–19 × 5–7.5 μm, L = 13.7–15.7

...

M. perticatum Spirin & Volobuev

SUPPLEMENTARY FILE

Supplementary file 1 – Geographic distribution of *Megalocystidium* spp.

ACKNOWLEDGEMENTS

The curators of herbaria S, GB, PRM, TAAM, and OULU are thanked for providing specimens for loan. Two ITS sequences were produced as part of the Finnish Barcode of Life (FinBOL) sequencing project. Ilya Viner (University of Helsinki, Finland) helped us with culturing and

P. tremula; 30 May 2000; Spirin s.n.; LE[LE213678] • Vetluga Dist., Vetluga; Salix sp.; 19 Aug. 1999; Spirin s.n.; LE[LE222984]. – Primorje Region • Krasnoarmeiskii Dist., Valinku; Salix cardiophylla; 29 Aug. 2013; Spirin 6512*; H. – Sverdlovsk Region • Olenii Ruchii Nat. Park, Bazhukovo; *M. salicis*; 29 Aug. 1999; Spirin s.n.; GB. – SWEDEN – Norrbotten • Luleå, Karlshäll; Salix sp.; 6 Nov. 2017; Westerberg s.n. *; GB.

Notes – *Megalocystidium salicis* is one of three representatives of the genus occurring on wood of *Salicaceae* in temperate – boreal Eurasia (with a few records on host species from other families). Of them, *M. olens* has much softer and smaller basidiocarps than *M. salicis*, and it bears rare and often poorly differentiated gloeocystidia. Differences of *M. salicis* from *M. perticatum* are listed under the latter species. *Conferticium ravum* (Burt) Ginns & G.W.Freeman (= *Gloeocystidellum karstenii* Donk) (Russulales) is macroscopically almost identical to *M. salicis* and it occurs mainly on dead branches of *Populus* and *Salix*. However, it can be easily separated from *M. salicis* by its clampless hyphae and much smaller, ornamented basidiospores (see Eriksson & Ryvarden 1975, under *G. karstenii*).

CONCLUSION

In the present paper, we re-described *M. leucoxanthum* as a species restricted to a particular host tree, *A. alnobetula*, and introduced six other taxa, four of them as new to science. These results were based on newly collected material from Eurasia studied by morphological and molecular methods. Using *tef1* region was crucial for the species delimitation in this group, and ecological and geographic data provided additional arguments for our species-level taxonomic conclusions. At the generic level, *Megalocystidium* was emended to encompass one species with acanthophyses, *M. diffissum*.

However, the species diversity in *M. leucoxanthum* complex would be higher if the North American specimens are taken into account. We tentatively named a few Canadian collections available to us as belonging either to *M. leucoxanthum* s.s. or to *M. pellitum*. These specimens show no essential morphological differences from the Eurasian material so labelled but unfortunately our attempts to sequence them failed. Ginns & Lefebvre (1993) and Ginns & Freeman (1994) reported *M. leucoxanthum* from many geographic regions of North America. In these publications, the host list included not only various deciduous trees but also conifers (*Picea engelmannii*). This is a clear indication that the *M. leucoxanthum* complex in North America requires a closer look.
The research of the author SV was supported by the Grant of the President of the Russian Federation (grant no. MK-3216.2019.11) and the institutional research project of Komarov Botanical Institute RAS (project AAAA-A19-119020890079-6).

REFERENCES

Communicating editor: Jérôme Degreef.

Submission date: 29 Jan. 2021
Acceptance date: 22 Mar. 2021
Publication date: 24 Jun. 2021