Morphophysiological dormancy, germination, and cryopreservation in Aristolochia contorta seeds
Cover of volume 151 issue 1
PDF

Keywords

Aristolochia contorta
germination
seed dormancy
seed cryopreservation
embryo form
embryo development

How to Cite

Voronkova, N., Kholina, A., Koldaeva, M., Nakonechnaya, O. and Nechaev, V. (2018) “Morphophysiological dormancy, germination, and cryopreservation in Aristolochia contorta seeds”, Plant Ecology and Evolution, 151(1), pp. 77-86. doi: 10.5091/plecevo.2018.1351.

Abstract

Background and aimsAristolochia contorta is a valuable medicinal plant, a relict of the Tertiary flora. Little is known about the germination biology of Aristolochia. The specific objectives of the present study were to (1) determine the type of dormancy in seeds of A. contorta, (2) describe the embryo development, and (3) explore the influence of deep freezing of the seeds in liquid nitrogen on their germinability.
Methods – Seeds were germinated in Petri dishes in sand previously sterilised at high temperature; germination experiments were carried out at 27±2°C under natural light. All measurements of seeds and embryos were done using light microscopy (LM). For cryopreservation, fresh seeds were placed in aluminium foil bags, immersed into liquid nitrogen (-196°С), and stored for twelve months.
Key results – The seeds of Aristolochia contorta have non-deep simple morphophysiological dormancy. A variety of embryo forms were revealed for Aristolochia species for the first time. Two cases of polyembryony were noted in A. contorta. The seeds of A. contorta are resistant to cryopreservation in liquid nitrogen.
Conclusions – High variability in dormancy depth and the extended germination period of A. contorta seeds can be considered as adaptive strategies for survival in unfavourable conditions and renewal of germination under optimal conditions. Cryopreservation helped maintain the viability of A. contorta seeds but did not lead to the breaking of the dormancy; hence, for successful germination, it is necessary to use methods of breaking dormancy after freezing.

https://doi.org/10.5091/plecevo.2018.1351
PDF

References

Adams C.A., Baskin J.M., Baskin C.C. (2005a) Trait stasis versus adaptation in disjunct relict species: evolutionary changes in seed dormancy-breaking and germination requirements in a subclade of Aristolochia subgenus Siphisia (Piperales). Seed Science Research 15: 161–173. https://doi.org/10.1079/SSR2005207

Adams C.A., Baskin J.M., Baskin C.C. (2005b) Comparative morphology of seeds of four closely related species of Aristolochia subgenus Siphisia (Aristolochiaceae, Piperales). Botanical Journal of the Linnean Society 148: 433–436. https://doi.org/10.1111/j.1095-8339.2005.00402.x

Akulova Z.V., Alexandrova E.K. (1996) Fam. Aristolochiaceae Juss. In: Budantsev A.L. (ed.) Plant resources of Russia and adjacent states. Part II. Supplements to vol. 1: 103–104. SPb, Mir i semja–95.

Alves-Da-Silva D., Borghetti F., Thompson K., Pritchard H., Grime J.P. (2011) Underdeveloped embryos and germination in Aristolochia galeata seeds. Plant Biology 13: 104–108. https://doi.org/10.1111/j.1438-8677.2009.00302.x

Artyukova E.V., Kozyrenko M.M., Koren O.G., Kholina A.B., Nakonechnaya O.V., Zhuravlev Yu.N. (2012) Living on the edge: various modes of persistence at the range margins of some Far Eastern species. In: Galiskan M. (ed.) Genetic diversity in plants: 349–374. Rijeka, InTech. https://doi.org/10.5772/35032

Bai B., Toubiana D., Gendler T., Degu A., Gutterman Y., Fait A. (2015) Metabolic patterns associated with the seasonal rhythm of seed survival after dehydration in germinated seeds of Schismus arabicus. BMC Plant Biology 15: 37. https://doi.org/10.1186/s12870-015-0421-9

Baskin J.M., Baskin C.C. (2004) A classification system for seed dormancy. Seed Science Research 14: 1–16. https://doi.org/10.1079/SSR2003150

Beljaev E.A., Chistyakov Yu. (2005) A. Sericinus montela. In: Kostenko V.A. (ed.) Red Book of Primorsky Krai: Animals: 114–116. Vladivostok, Apel’sin.

Berjano Pérez R. (2006) Biología de la reproducción de dos especies mediterráneas de Aristolochia. PhD thesis, Universidad de Sevilla, Sevilla, Spain.

Bliss B.J., Wanke S., Barakat A., Ayyampalayam S., Wickett N., Wall P.K., Jiao Y., Landherr L., Ralph P.E., Hu Y., Neinhuis C., Leebens-Mack J., Arumuganathan K., Clifton S. W., Maximova S.N., Ma H., de Pamphilis C.W. (2013) Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC Plant Biology 13: 13. https://doi.org/10.1186/1471-2229-13-13

Chen S.Y., Kuo S.R., Chien C.T., Baskin J.M., Baskin C.C. (2007) Germination, storage behaviour and cryopreservation of seeds of Champereia manillana (Opiliaceae) and Schefflera octophylla (Araliaceae). Seed Science and Technology 35: 154–164. https://doi.org/10.15258/sst.2007.35.1.14

Dávalos A., Nuzzo V., Blossey B. (2015) Interactive effect of deer, earthworms and non-native plants on rare forest plant recruitment. Biological Conservation 187: 173–181. https://doi.org/10.1016/j.biocon.2015.04.025

Gois S.F., Almeida L.M. (2016) Análise da germinação de Aristolochia gigantea Mart. & Zucc. em diferentes temperaturas e substratos. Revista Cultural e Científica do UNIFACEX. 14: 36–52.

González F.A. (1991) Notes on the systematics of Aristolochia subsect Hexandrae. Annals of the Missouri Botanical Garden 78: 497–503. https://doi.org/10.2307/2399576

González F.A., Stevenson D.W. (2002) A phylogenetic analysis of the subfamily Aristolochioideae (Aristolochiaceae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 26: 25–58.

Hwang Sh., Kelly L.M., Gilbert M.G. (2003) Aristolochiaceae. In: Wu Z.Y., Raven P.H., Hong D.Y. (eds) Flora of China. 5: 246–269. St. Louis, Missouri Botanical Garden Press; Beijing, Science Press.

Kharkevich S.S. (1987) Aristolochiaceae. In: Kharkevich S.S. (ed.) Vascular plants of the Soviet Far East. 2: 19–21. Leningrad, Nauka.

Kholina A.B., Voronkova N.M. (2008) Conserving the gene pool of far eastern plants by means of seed cryopreservation. Biology Bulletin 35: 262–269. https://doi.org/10.1134/S1062359008030060

Kholina A.B., Voronkova N.M. (2012) Seed cryopreservation of some medicinal legumes. Journal of Botany 2012: ID 186891. https://doi.org/10.1155/2012/186891

Kurentsova G.E. (1968) Relic Plants of Primorye. Leningrad, Nauka.

Maekawa L., Albuquerque M.C.F., Coelho M.F.B. (2010) Germination of Aristolochia esperanzae O.Kuntze seeds under different temperatures and light conditions. Revista Brasileira de Plantas Medicinais 12: 23–30. https://doi.org/10.1590/S1516-05722010000100005

Martin A.C. (1946) The comparative internal morphology of seeds. The American Midland Naturalist 36: 513–660. https://doi.org/10.2307/2421457

Nakonechnaya O.V., Nechaev V.A., Kholina A.B. (2010) The natural habitats characteristic of Aristolochia contorta Bunge in Primorye (Russia). Vestnik KrasGAU 12: 35–41.

Nakonechnaya O.V., Nesterova S.V., Voronkova N.M. (2012) Ontogeny of Aristolochia contorta (Aristolochiaceae) in Primorsky Territory. Botanicheskiy Zhurnal 97: 1505–1515.

Nakonechnaya O.V., Gorpenchenko T.Yu., Voronkova N.M., Kholina A.B., Zhuravlev Yu.N. (2013) Embryo structure, seed traits, and productivity of relict vine Aristolochia contorta (Aristolochiaceae). Flora 208: 293–297. https://doi.org/10.1016/j.flora.2013.03.010

Nakonechnaya O.V., Zhuravlev Yu.N., Bulgakov V.P., Koren O.G., Sundukova E.V. (2014) Genus Aristolochia on the Russian Far East (Aristolochia manshuriensis Kom. and A. contorta Bunge). Vladivostok, Dal’nauka.

Nechaev V.A., Nakonechnaya O.V. (2009) Structure of fruits and seeds and ways of dissemination of two species of the genus Aristolochia L. in Primorsky Krai. Biology Bulletin 36: 393–396. https://doi.org/10.1134/S1062359009040116

Nesterova S.V. (2008) Aristolochia contorta. In: Red Book of Primorsky Krai: Plants. 65. Vladivostok, Apel’sin.

Nikolaeva M.G. (2001) Ecological and physiological aspects of seed dormancy and germination (review of investigations for the last century). Botanicheskiy Zhurnal 86: 1–14.

Nikolaeva M.G., Tikhonova V.L., Daletskaya T.V. (1992) Long-term storage of wild-growing plant seeds: biological features of seeds. Information on genetic resource conservation. Pushchino, Ross. Akad. Nauk.

Oh S.-Y., Pak J.-H. (2001) Distribution maps of vascular plants in Korea. Seoul, Academy Book Publ. Co.

Ohwi J. (1965) Flora of Japan. Washington, Smithsonian Institute.

Pence V.C. (1991) Cryopreservation of seeds of Ohio native plants and related species. Seed Science and Technology 19: 235–251.

Rawat M.M.S., Thapliyal R.C. (2003) Endogenous rhythm in seed germination of Dendrocalamus strictus. Seed Science and Technology 31: 21–27. https://doi.org/10.15258/sst.2003.31.1.03

Schmidt O.C. (1935) Aristolochiaceae. In: Engler A., Prantl K. (eds) Die natürlichen Pflanzenfamilien 16b: 204–242. 2nd Ed. Leipzig, W. Engelman.

Scalon S.P.Q., Sene P.A.L., Zatti D.A., Mussury R., Scalon Filho H. (2007) Immersion in water, temperature, light and substratum effects on of cipo-mil-homens (Aristolochia triangulares Cham. & Schl.) seed germination. Revista Brasileira de Plantas Medicinais, Botucatu 9: 32–38.

Sokolova E.A. (2010) Solanaceae Family. In: Takhtajan A.L. (ed.) Comparative anatomy of seeds 7: 143–158. Saint-Petersburg, Nauka.

Tikhonova V.L. (1999) Long-term storage of seeds. Russian Journal of Plant Physiology 46: 400–408.

Voronkova N.M., Nesterova S.V., Zhuravlev Yu.N. (1996) Germination of seeds of some rare and endangered species of the Primorsky Land. Rastitelnye Resursy 32: 51–60.

Voronkova N.M., Kholina A.B. (2010) Conservation of endemic species from the Russian Far East using seed cryopreservation. Biology Bulletin 37: 496–501. https://doi.org/10.1134/S1062359010050092

Zhang C.-Y., Wang X., Su T., Ma C.-M., Wen Y.-J., Shang M.-Y., Li X.-M., Liu G.-X., Cai S.-Q. (2005) New aristolochic acid, aristololactam and renal cytotoxic constituents from the stem and leaves of Aristolochia contorta. Die Pharmazie 60: 785–788.

Zhou J., Xie G., Yan X. (2011) Encyclopedia of traditional chinese medicines: molecular structures, pharmacological activities, natural sources and applications. Vol. 5: Isolated compounds T–Z, references, TCM plants and congeners. Berlin & Heidelberg, Springer-Verlag. https://doi.org/10.1007/978-3-642-16741-6

Zhou J., Teixeira da Silva J.A., Ma G. (2014) Effects of smoke water and karrikin on seed germination of 13 species growing in China. Central European Journal of Biology 9: 1108–1116. https://doi.org/10.2478/s11535-014-0338-6

For material published before 1 January 2019, all rights are reserved. Copyright holders are Meise Botanic Garden and the Royal Botanical Society of Belgium. Permission to use this material must always be obtained from the Editor in chief, via the Editorial Office.

For further information on access, permissions and re-use of papers published in Plant Ecology and Evolution, please read our Open Access policy.