Mycorrhizae: a key interaction for conservation of two endangered Magnolias from Andean forests
Cover of volume 152 issue 1 of Plant Ecology and Evolution
PDF

Supplementary Files

Supplementary File 1
Supplementary File 2

Keywords

Rhizosphere
Andean cloud forests
Magnolia jardinensis
Magnolia yarumalensis
soil fertility
tree nutrition
conservation
mycorrhizae

How to Cite

Serna-González, M., Urrego-Giraldo, L., Osorio, N. and Valencia-Ríos, D. (2019) “Mycorrhizae: a key interaction for conservation of two endangered Magnolias from Andean forests”, Plant Ecology and Evolution, 152(1), pp. 30-40. doi: 10.5091/plecevo.2019.1398.

Abstract

Background and aimsMagnolia species are highly endangered in neotropical forests where they are highly endemic and often very rare. However, little is known about their nutritional and soil conditions in natural forests. In this study, we focused on two endangered Magnolia species that cohabit in the Colombian Andean cloud forests in order to identify their conservation and nutritional status. We hypothesize that these species might exhibit mycorrhizal colonization that enhance nutrients uptake in poor and disturbed soils.
Methods – Individuals of Magnolia jardinensis and M. yarumalensis were assessed in 11 000 m2 of Andean forests remnants from Jardín municipality (Antioquia, Colombia). Foliar and soil samples were analysed in the lab. Through a Principal Component Analysis (PCA) we identified the relationship between soil conditions and foliar nutrition. Root fragments and rhizosphere samples from seedlings and juveniles up to 3 m tall were collected to verify mycorrhizal colonization and presence of other microorganisms. Adults were excluded of the sampling due to the difficulties to differentiate their roots among the rest of the species in the forest fragments.
Key results – The surveys show that the M. yarumalensis population has an inverted J-shaped diametric distribution suggesting a potential recovering population while the smaller overall distribution of M. jardinensis in all diametric categories suggests that this species is likely to become extinct. Both species grow in acidic, infertile soils, although foliar nutrient concentrations did not correlate with soil-nutrient availability. Such a discrepancy and the high colonization levels of mycorrhizae (60–70%) and dark septate endophytes (40–45%), suggest that plant-microorganisms may facilitate nutrition and enhance survival of Magnolia species in stressed environments. Other fungi and bacteria were also found in their rhizosphere, but their role with respect to Magnolia species remains unclear.
Conclusions - Mycorrhizal colonization of endangered Magnolia species seems to play a key role to their performance in natural disturbed Andean forests. Aspects related to soil and rhizosphere ecology should be included in conservation projects for endangered and endemic plants.

https://doi.org/10.5091/plecevo.2019.1398
PDF

References

Alarcón A.L. (2001) El boro como nutriente esencial. Revista Horticultura 155: 1–11.

Alemañy-Merly S.E. (1999) Magnolia portoricensis Bello. New Orleans, Department of Agriculture, Forest Service, Southern Forest Experiment Station.

Andersen K.M., Turner B.L., Dalling J.W. (2010) Soil-based habitat partitioning in understorey palms in lower montane tropical forests. Journal of Biogeography 37: 278–292. https://doi.org/10.1111/j.1365-2699.2009.02192.x

Armenteras D., Rodríguez N., Retana J., Morales M. (2011) Understanding deforestation in montane and lowland forests of the Colombian Andes. Regional Environmental Change 11: 693–705. https://doi.org/10.1007/s10113-010-0200-y

Barrow J.R., Osuna P. (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. Journal of Arid Environments 51: 449–459. https://doi.org/10.1006/jare.2001.0925

Becker P., Castillo A. (1990) Root architecture of shrubs and saplings in the understory of a tropical moist forest in lowland Panama. Biotropica 22: 242–249. https://doi.org/10.2307/2388534

Bleish L., Xie J. (1998) Selected nutrient analysis of plants in the diet of the Guizhou snub-nosed monkey (Rhinopithecus brelkichi). In: Jablonski N (ed.) The natural history of the doucs and snub-nosed monkeys: 252. London, World Scientific.

Blinn C., Bucker E. (1989) Normal foliar nutrient levels in North American forest trees Station Bulletin 590-1989 (Item No. AD-SB-3762). St Paul, University of Minnesota.

Bruijnzeel L.A. (1991) Nutrient input-output budgets of tropical forest ecosystems: a review. Journal of Tropical Ecology 7: 1–24. https://doi.org/10.1017/S0266467400005010

Cámara-Leret R., Tuomisto H., Ruokolainen K., Balslev H., Munch Kristiansen S. (2017) Modelling responses of western Amazonian palms to soil nutrients. Journal of Ecology 105: 367–381. https://doi.org/10.1111/1365-2745.12708

Cano M.A. (2011) Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. Una revisión. Revista U.D.C.A. Actualidad & Divulgación Científica 14: 15–31.

Castro F. (1996) Base técnica para el conocimiento y manejo del suelo del Valle del Alto Magdalena. Espinal, CORPOICA.

Chen H., Gurmesa G.A., Liu L., Zhang T., Fu S., Liu Z., Zhanfeng L., Shaofeng D., Chuan M., Jianming M. (2014) Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China. PLOS ONE 9: e99018. https://doi.org/10.1371/journal.pone.0099018

Clark D. (2002) Los factores edáficos y la distribución de las plantas. In: Guariguatta M., Kattan G. (eds) Ecología y conservación de bosques neotropicales: 193–222. Cartago, Ediciones LUR.

CORANTIOQUIA (2011) Avances en la estrategia para la conservación de la familia Magnoliaceae en jurisdicción de CORANTIOQUIA. Boletín Técnico Biodiversidad 6: 100–101.

Dalpé Y., Séguin S.M. (2013) Microwave-assisted technology for the clearing and staining of arbuscular mycorrhizal fungi in roots. Mycorrhiza 23: 333–340. https://doi.org/10.1007/s00572-012-0472-9

de Oliveira Freitas R., Buscardo E., Nagy L., dos Santos Maciel A.B., Carrenho R. Luizão R.C.C. (2014) Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest. Mycorrhiza 24: 21–32. https://doi.org/10.1007/s00572-013-0507-x

de Souza R., Ambrosini A., Passaglia L.M.P. (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology 38: 401–419. https://doi.org/10.1590/S1415-475738420150053

Espinoza L., Slaton N., Mozaffari M. (2000) Como interpretar los resultados de los análisis de suelos. Agricultura y Recursos Naturales FSA2118SP. Little Rock, University of Arkansas.

Etter A., McAlpine C., Wilson K., Phinn S., Possingham H. (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems & Environment 114: 369–386. https://doi.org/10.1016/j.agee.2005.11.013

Fitter A.H., Helgason T., Hodge A. (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biology Reviews 25: 68–72. https://doi.org/10.1016/j.fbr.2011.01.002

Garcés de Granada E., Martha O.D.A., Bautista G.R., Valencia H. (2001) Fusarium oxysporum el hongo que nos falta conocer. Acta Biológica Colombiana 6: 7–26.

Giovannetti M., Mosse B. (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84: 489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Girmé G., Grau E., Calvo M.A., Leonardo E. (2014) Clave dicotómica para la identificación de hongos aislados sistemáticamente en ambientes mediterráneos. Revista de La Sociedad Española de Microbiología 57: 69–71.

Grilli G., Urcelay C., Galetto L. (2013) Linking mycorrhizal fungi and soil nutrients to vegetative and reproductive ruderal plant development in a fragmented forest at central Argentina. Forest Ecology and Management 310: 442–449. https://doi.org/10.1016/j.foreco.2013.08.052

Gutierrez L., Vovides A.P. (1997) An in situ study of Magnolia dealbata Zucc. in Veracruz State: an endangered endemic tree of Mexico. Biodiversity & Conservation 6: 89–97. http://doi.org/10.1023/A%3A1018327700030

Heineman K.D., Caballero P., Morris A., Velasquez C., Serrano K., Ramos N., Gonzalez J., Mayorga L., Corre M.D., Dalling J.W. (2015) Variation in canopy litterfall along a precipitation and soil fertility gradient in a Panamanian lower montane forest. Biotropica 47: 300–309. https://doi.org/10.1111/btp.12214

Holdridge L.R. (1978) Ecología basada en zonas de vida. San José, IICA.

Hoshino D., Nishimura N., Yamamoto S. (2001) Age, size structure and spatial pattern of major tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management 152: 31–43. https://doi.org/10.1016/S0378-1127(00)00614-9

IUCN (2017) The IUCN Red List of Threatened Species. Version 2017-1. Available from http://www.iucnredlist.org [accessed 12 Dec. 2016].

Jaramillo D. (2002) Introducción a la ciencia del suelo. Medellín, Leo Digital.

Jordan C.F. (1985) Nutrient cycling in tropical forest ecosystems. Chichester, Wiley.

Krings M., Taylor T.N., Dotzler N. (2013) Fossil evidence of the zygomycetous fungi. Persoonia 30: 1–10. https://doi.org/10.3767/003158513X664819

Kwon J.-H., Kang S.-W., Kim J.-S., Park C.-S. (2001) Rhizopus soft rot on cherry tomato caused by Rhizopus stolonifer in Korea. Mycobiology 29: 176–178. https://doi.org/10.1080/12298093.2001.12015783

López D.M., Bock B.C., Bedoya G. (2008) Genetic structure in remnant populations of an endangered Andean Magnolia. Biotropica 40: 375–379.

Mandyam K., Jumpponen A. (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology 53: 173–189. https://doi.org/10.3114/sim.53.1.173

Newsham K.K., Fitter A.H., Watkinson A.R. (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology & Evolution 10: 407–411. https://doi.org/10.1016/S0169-5347(00)89157-0

Oehl F., Sieverding E., Palenzuela J., Ineichen K., Alves da Silva G. (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2: 191–199. https://doi.org/10.5598/imafungus.2011.02.02.10

Osorio N.W. (2014) Manejo de nutrientes en suelos del trópico. Medellín, Vieco SAS.

Osorio W., Ruiz O. (2013) Guía para la toma de muestras. Laboratorio de Suelos. Medellín, Universidad Nacional de Colombia sede Medellín.

Otero J.T., Flanagan N.S., Allen Herre E., Ackerman J.D., Bayman P. (2007) Mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). American Journal of Botany 94: 1944–1950. https://doi.org/10.3732/ajb.94.12.1944

Pellissier L., Pinto-Figueroa E., Niculita-Hirzel H., Moora M., Villard L., Goudet J., Guex N., Pagni M., Xenarios I., Sanders I.,Guisan A. (2013) Plant species distributions along environmental gradients: do belowground interactions with fungi matter? Frontiers in Plant Science 4: 1–9. https://doi.org/10.3389/fpls.2013.00500

Perry E., Hickman G. (1999) A survey to determine the baseline nitrogen leaf concentration of twenty-five landscape tree species. Slosson Project Report 1999–2001. Available from http://slosson.ucdavis.edu/newsletters/Perry_200029041.pdf [accessed 14 Dec. 2018].

Peterson R.L., Wagg C., Pautler M. (2008) Associations between microfungal endophytes and roots: do structural features indicate function? Botany 86: 445–456. https://doi.org/10.1139/B08-016

Pitman N.C.A., Jørgensen P.M. (2002) Estimating the size of the world’s threatened flora. Science 298: 989. https://doi.org/10.1126/science.298.5595.989

Primack R., Rozzi R., Feinsinger P., Dirzo R., Massardo F. (2001) Fundamentos de conservación biológica: perspectivas latinoamericanas. México D.F., Fondo de Cultura Económica

Reinoso Y., Vaillant D., Casadesús L., García E., Pazos V. (2007) Cepas de Brevibacillus laterosporus y Brevibacillus brevis antagonistas de bacterias y hongos fitopatógenos del Cultivo de la Papa (Solanum Tuberosum L.). Fitosanidad 11: 79–80.

Rivers M., Beech E., Murphy L., Oldfield S. (2016) The Red List of Magnoliaceae revised and extended. Richmond, Botanic Gardens Conservation International. Available from https://www.bgci.org/files/Global_Trees_Campaign/Magnolia/Magnoliaceae_RedList2016_LowRes.pdf [accessed 14 Dec. 2018].

Rodriguez R.J., Henson J., Van Volkenburgh E., Hoy M., Wright L., Beckwith F., Kim Y.-O., Redman R.S. (2008) Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal 2: 404–416. https://doi.org/10.1038/ismej.2007.106

Rodriguez R., Redman R. (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. Journal of experimental botany 59: 1109–1114. https://doi.org/10.1093/jxb/erm342

Rodriguez R.J., Freeman D.C., Durant Mcarthur E., Kim Y.O., Redman R.S. (2009) Symbiotic regulation of plant growth, development and reproduction. Communicative & Integrative Biology 2: 141–143.

R Studio Team (2015) RStudio: integrated development for R. Boston, RStudio, Inc. Available from http://www.rstudio.com/ [accessed 10 Dec. 2015].

Ruiu L. (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4: 476–492. https://doi.org/10.3390/insects4030476

Sánchez de Prager M., Posada R., Velásquez D. Narváez M. (2010) Metodologías básicas para el trabajo con micorriza arbuscular y hongos formadores de micorriza arbuscular. Palmira, Universidad Nacional de Colombia sede Palmira.

Sánchez-Velásquez L.R., Pineda-López M.D.R. (2009) Comparative demographic analysis in contrasting environments of Magnolia dealbata: an endangered species from Mexico. Population Ecology 52: 203–210. https://doi.org/10.1007/s10144-009-0161-5

Serna M., Velásquez C. (2003) Implementación de una estrategia de conservación de las especies de Magnoliaceae en la jurisdicción de CORANTIOQUIA Fase II. Medellín, CORANTIOQUIA–Jardín Botánico de Medellín.

Serna M., Velásquez C., Cogollo A. (2009) Novedades taxonómicas y un nuevo registro de Magnoliaceae para Colombia. Brittonia 61: 35–40. https://doi.org/10.1007/s12228-008-9055-7

Siqueira J.O., Carneiro M.A.C., Curi N., Rosado S.C.S., Davide A.C. (1998) Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. Forest Ecology and Management 107: 241–252. https://doi.org/10.1016/S0378-1127(97)00336-8

Smith S.E., Read D. (2008) Mycorrhizal symbiosis. 3rd Ed. London, Academic Press. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6

Soil Science Division Staff (2017) Examination and description of soil profiles In: Ditzler C., Scheffe K., Monger H.C. (eds) Soil survey manual. USDA Handbook 18. Washington, Government Printing Office. Available from https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054262 [accessed 23 May 2017].

Swarts N.D., Dixon K.W. (2009) Terrestrial orchid conservation in the age of extinction. Annals of Botany 104: 543–556. https://doi.org/10.1093/aob/mcp025

ter Braak C.J.F., Šmilauer P. (2009) CANOCO for Windows. Version 4.56. Wageningen, Biometrics-Plant Research International.

Vierheilig H., Piché Y. (1998) A modified procedure for staining arbuscular mycorrhizal fungi in roots. Zeitschrift für Pflanzenernährung und Bodenkunde 161: 601–602. https://doi.org/10.1002/jpln.1998.3581610515

Vinogradov A.E. (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends in Genetics 19: 609–614. https://doi.org/10.1016/j.tig.2003.09.010

Whipps J., Lumsden R. (1989) Biotechnology of fungi for improving plant growth: symposium of the British Mycological Society. Cambridge, NY, Cambridge University Press.

Wu D., Chen Z. (2000) Effects of human disturbance on the population dynamics of Manglietia fordiana Oliv. In: Liu Y.H., Fan H.M., Chen Z.Y., Wu Q.G., Zen Q.W. (eds) Proceedings of the International Symposium on the family Magnoliaceae, May 18–22, 1998, Guangzhou, China: 65–74. Beijing, Science Press.

Yang A., Lu L., Wu C., Xia M. (2011) Arbuscular mycorrhizal fungi associated with Huangshan Magnolia (Magnolia cylindrica). Journal of Medicinal Plants Research 5: 4542–4548.

Yepes M. (2007) Evaluación de las poblaciones del guanábano de monte (Magnolia silvioi) en el área de reserva del distrito de manejo integrado del cañón del río Alicante. Medellín, CORANTIOQUIA.

Yepes-Quintero A., Duque-Montoya A.J., Navarrete-Encinales D., Phillips-Bernal J., Cabrera-Montenegro E., Corrales-Osorio A., Álvarez-Dávila E., Galindo-García G., García-Dávila M.C., Idárraga A., Vargas-Galvis D. (2011) Estimación de las reservas y pérdidas de carbono por deforestación en los bosques del departamento de Antioquia, Colombia. Actualidades Biológicas 33(95): 193–208.

Zangaro W., Nisizaki S., Domingos J., Nakano E. (2003) Mycorrhizal response and successional status in 80 woody species from south Brazil. Journal of Tropical Ecology 19: 315–324. https://doi.org/10.1017/S0266467403003341

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.