Habitat requirements and germination performance of some relict populations of Ligularia sibirica (Asteraceae) from Romania
cover of volume 151 issue 3
PDF

Supplementary Files

Supplementary File 1 - PDF
Supplementary File 2 - PDF

Keywords

glacial relicts
germination capacity
habitat characteristics
Ligularia sibirica populations

How to Cite

Cîșlariu, A., Mânzu, C. and Zamfirache, M. (2018) “Habitat requirements and germination performance of some relict populations of Ligularia sibirica (Asteraceae) from Romania”, Plant Ecology and Evolution, 151(3), pp. 314-326. doi: 10.5091/plecevo.2018.1422.

Abstract

Background and aimsLigularia sibirica is a glacial relict plant species in Europe. Its populations are rare and endangered in most of the European localities. Studies on glacial relics are insufficient; among them only a few focus on the population characteristics and their reproductive capacity. We aimed to determine the habitat requirements of L. sibirica populations; which factors affect the reproductive output of the populations and how the interaction of ecological and biological parameters influences their germination capacity.
Methods – We described habitat conditions in terms of the Ellenberg indicators (for nitrogen availability, moisture, light, soil reaction, and temperature) in each analysed population. To determine which factors affect the population viability we performed a series of regression analyses. Germination experiment was carried under laboratory-controlled conditions at a 14/10 h. photoperiod and 24/16°C temperature, for 32 days, with cold stored seeds (at 4°C), and seeds stored at room temperature on a different substrate (moist filter paper and oligotrophic soil). The parameters influencing population germination rate were determined with general linear models.
Key results – We found that the soil humidity, nitrogen availability, temperature, and lighting are the ecological factors influencing the morphological features of L. sibirica populations. The largest seeds are in the middle part of the inflorescence though this parameter has no influence on germination rate. The seeds germinated better on moist filter paper. Cold stored seeds did not show higher germination rate. Germination increased with the altitude of the populations and the seeds mass, whilst higher values of density had a negative influence on it.
Conclusions – Our results suggest that habitat conditions and population characteristics are highly related to the germination success of L. sibirica. The prosperity of a population (expressed by the number of individuals) is not a guarantee of reproductive success, the densest populations having the lowest rates of germination.

https://doi.org/10.5091/plecevo.2018.1422
PDF

References

Bancheva S. (2009) Ligularia sibirica (L.) Cass. In: Petrova A., Vladimirov V. (eds) Red List of Bulgarian vascular plants. Phytologia Balcanica 15(1):63–94.

Bensettiti F., Gaudillat V., Malengrau D., Quéré E. (eds) (2002) Cahiers d’habitats Natura 2000. Connaissance et gestion des habitats et des espèces d’intérêt communautaire. 6. Espèces végétales. Paris, MATE/MAP/MNHN, La Documentation française.

Bernhardt K.G., Dostalova A., Ferakova V., Gygax A., Hodálová I., Illarionova I., Király G., Petrova A., Rasomavicius V. (2011) Ligularia sibirica. The IUCN Red List of Threatened Species: e.T162069A5546780. Available from http://www.iucnredlist.org/details/162069/1 [accessed 26 Nov. 2017].

Bilz M., Kell S.P., Maxted N., Lansdown R.V. (2011) European Red List of Vascular Plants. Luxembourg, Publications Office of the European Union.

Boeye D., Verhagen B., van Haesebroeck V., Verheyen R.F. (1997) Nutrient limitation in species-rich lowland fens. Journal of Vegetation Science 8: 415–424. https://doi.org/10.2307/3237333

Braun-Blanquet J. (1983) Plant Sociology. The study of plant communities. Translated, revised and edited by George D.Fuller and Henry S.Conard, 1932. (reprint 1983). Koenigstein, Koeltz Scientific Books.

Brzosko E., Ostrowiecka B., Mirski P., Jermakowicz E., Tałałaj I., Wróblewska A. (2017) Pollinator limitation affects low reproductive success in populations of nectarless orchid in the Biebrza National Park. Acta Agrobotanica 70(1): 1706. https://doi.org/10.5586/aa.1706

Brys R., Jaquemyn H., Endels P., Van Rossum F., Hermy M., Triest L., De Bruyn L., Blust G.D.E. (2004) Reduced reproductive success in small populations of the self-incompatible Primula vulgaris. Journal of Ecology 92: 5–14. https://doi.org/10.1046/j.0022-0477.2004.00840.x

Chater A.O. (1976) Ligularia Cass. In: Tutin T.G., Heywood V.H., Burges N.A., Valentine D.H. (eds) Flora Europaea 4. Plantaginaceae to Compositae (and Rubiaceae): 205. Cambridge, Cambridge University Press.

Chifu T., Mânzu C., Zamfirescu O. (2006) Flora și vegetația Moldovei (România). 2. Vegetația. Iași, Alexandru Ioan Cuza University Press.

Chrzanowska A., Jadwiszczak K.A., Kłosowski S., Banaszek A., Sozinov O.V. (2016) Sexual reproduction efficiency and genetic diversity of endangered Betula humilis Schrk. populations from edge and sub-central parts of its range. Folia Geobotanica 51: 161–173. https://doi.org/10.1007/s12224-016-9244-1

Diekmann M. (2003) Species indicator values as an important tool in applied plant ecology – a review. Basic and Applied Ecology 4: 493–506. https://doi.org/10.1078/1439-1791-00185

Dyer A.R., Goldberg D.E., Turkington R., Sayre C. (2001) Effects of growing conditions and source habitat on plant traits and functional group definition. Functional Ecology 15: 85–95. https://doi.org/10.1046/j.1365-2435.2001.00487.x

Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulißen D. (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd Ed. Scripta Geobotanica 18: 1–258. Göttingen, Goltze.

Fomina T.I. (2016) The peculiarities of seed germination of ornamental perennial plants of Asteraceae Dumort. family. Bulletin of Altai State Agricultural University 9(143): 25–30.

Giménez-Benavides L., Escudero A., Pérez-García F. (2005) Seed germination of high mountain Mediterranean species: altitudinal, interpopulation and interannual variability. Ecological Research 20: 433–444. https://doi.org/10.1007/s11284-005-0059-4

Grzyl A., Kiedrzyński M., Zielińska K.M., Rewicz A. (2014) The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis: the last breath of a relict plant or a fluctuating cycle of regeneration? Plant Ecology 215: 457–466. https://doi.org/10.1007/s11258-014-0316-0

Hampe A., Jump A.S. (2011) Climate relicts: past, present, future. Annual Review of Ecology, Evolution, and Systematics 42: 313–333. https://doi.org/10.1146/annurev-ecolsys-102710-145015

Harper J.L., Lowell P.H., Moore K.G. (1970) The shapes and sizes of seeds. Annual Review of Ecology and Systematics 1: 327–356. https://doi.org/10.1146/annurev.es.01.110170.001551

He Y., Wang M., Wen S., Zhang Y., Tao M., Du G. (2007) Seed size effect on seedling growth under different light conditions in the clonal herb Ligularia virgaurea in Qinghai-Tibet Plateau. Acta Ecologica Sinica 27: 3091–3108. https://doi.org/10.1016/S1872-2032(07)60063-8

Heinken-Šmídová A. (2012) Study of factors influencing population dynamics of the plant species Ligularia sibirica (L.) Cass. PhD thesis, Palacký University, Olomouc, Czech Republik.

Heinken-Šmídová A., Münzbergová Z. (2012) Population dynamics of the endangered, long-lived perennial species, Ligularia sibirica. Folia Geobotanica 47: 193–214. https://doi.org/10.1007/s12224-011-9116-7

Heinken T., Weber E. (2013) Consequences of habitat fragmentation for plant species: do we know enough? Perspectives in Plant Ecology, Evolution and Systematics 15: 205–216. https://doi.org/10.1016/j.ppees.2013.05.003

Hendrych R. (2003) Poznatky o druhu Ligularia sibirica v Čechách. Preslia 75: 39–69.

Hensen I., Oberprieler C. (2005) Effects of population size on genetic diversity and seed production in the rare Dictamnus albus (Rutaceae) in central Germany. Conservation Genetics 6: 63–73. https://doi.org/10.1007/s10592-004-7745-6

Hewitt G.M. (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. https://doi.org/10.1038/35016000

Hewitt G.M. (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 183–195. https://doi.org/10.1098/rstb.2003.1388

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. https://doi.org/10.1002/joc.1276

Hobbs R.J., Yates C.J. (2003) Impacts of ecosystem fragmentation on plant populations: generalizing the idiosyncratic. Australian Journal of Botany 51: 471–488. https://doi.org/10.1071/BT03037

Hornemann G., Weiss G., Durka W. (2012) Reproductive fitness, population size and genetic variation in Muscari tenuiflorum (Hyacinthaceae): the role of temporal variation. Flora 207: 736–743. https://doi.org/10.1016/j.flora.2012.07.005

Ilves A., Lanno K., Sammul M., Tali K. (2013) Genetic variability, population size and reproduction potential in Ligularia sibirica (L.) populations in Estonia. Conservation Genetics 14: 661–669. https://doi.org/10.1007/s10592-013-0459-x

Jacquemart A.L. (1998) Biological Flora of the British Isles: Andromeda polifolia L. Journal of Ecology 86: 527–541. https://doi.org/10.1046/j.1365-2745.1998.00274.x

Jadwiszczak K.A., Kłosowski S., Zalewska I., Banaszek A., Chrzanowska A. (2017) Genetic diversity and sexual reproduction in relict populations of Betula nana. Silva Fennica 51: id 5643. https://doi.org/10.14214/sf.5643

Kasprowicz M. (2010) Acidophilous oak forest of the Wielkopolska region (West Poland) against the background of the Central Europe. Biodiversity Research and Conservation 20: 1–138. https://doi.org/10.2478/v10119-010-0012-4

Kļaviņa D., Gailīte A., Jakobsone G., Ņečajeva J., Gavrilova Ģ. (2004) Tissue culture technology in conservation of threatened plant species of Latvia. Acta Universitatis Latviensis, Biology 676: 183–188.

Kobiv Y. (2005) Ligularia sibirica (L.) Cass. (Asteraceae) in the Chornohora Mountains (Ukrainian Carpathians): population-ontogenetic parameters, morphology, taxonomy and conservation. Ukrainian Botanical Journal 62: 383–395.

Kostrakiewicz-Gierałt K. (2015) The impact of different habitat conditions on the variability of wild Ppopulations of a medicinal plant Betonica officinalis L. Ecologia Balkanica 7(1): 51–61.

Kostrakiewicz-Gierałt K., Kozak M., Kozłowska-Kozak K. (2015) The effect of different habitat conditions on temporal and spatial variation in selected population properties of the rare plant species Trollius europaeus L. Biodiversity Research and Conservation 39: 67–78. https://doi.org/10.1515/biorc-2015-0025

Kostrakieicz-Gierat K., Stachurska-Sako A. (2017) The influence of habitat conditions on the abundance and selected traits of the rare medicinal plant species Filipendula vulgaris Moench. Ecological Questions 25: 9–18. https://doi.org/10.12775/EQ.2017.001

Kukk Ü. (2003) The distribution of Ligularia sibirica (L.) Cass. in Estonia and changes in its population. Biuletyn Ogrodów Botanicznych 12: 11–22.

Lanno K., Sammul M. (2014) The survival of transplants of rare Ligularia sibirica is enhanced by neighbouring plants. Folia Geobotanica 49: 163–173. https://doi.org/10.1007/s12224-013-9163-3

Luzuriaga A.L., Escudero A., José Albert M., Giménez-Benavides L. (2006) Population structure effect on reproduction of a rare plant: beyond population size effect. Canadian Journal of Botany 84: 1371–1379. https://doi.org/10.1139/B06-078

Ma R.-J., Du G.-Z., Lu B.-R., Chen J.-K., Sun K., Hara T., Li B. (2006) Reproductive modes of three Ligularia weeds (Asteraceae) in grasslands in Qinghai-Tibet Plateau and their implications for grassland management. Ecological Research 21: 246–254. https://doi.org/10.1007/s11284-005-0114-1

Mânzu C., Gherghel I., Zamfirescu Ș., Zamfirescu O., Roșca I., Strugariu A. (2013) Current and future potential distribution of glacial relict Ligularia sibirica (Asteraceae) in Romania and temporal contribution of Natura 2000 to protect the species in light of global change. Carpathian Journal of Earth and Environmental Sciences 8(2): 77–87.

Matei A.N. (2014) Phytosociological study concerning associations with Ligularia sibirica (L.) Cass. in Romania. Current Trends in Natural Sciences 3(6): 54–60.

Menges E.S. (1990) Population viability analysis for an endangered plant. Conservation Biology 4: 52–62. https://doi.org/10.1111/j.1523-1739.1990.tb00267.x

Meusel H., Jäger E.J. (eds) (1992) Vergleichende Chorologie der Zentraleuropäischen Flora. 3. Jena, Stuttgart & New York, Gustav Fischer.

Mihăilescu S., Anastasiu P., Popescu A., Alexiu V.F., Negrean G.A., Bodescu F., Manole A., Ion R.G., Goia I.G., Holobiuc I., Vicol I., Neblea M.A., Dobrescu C., Mogîldea D.E., Sanda V., Biță-Nicolae C.D., Comănescu P. (2015) Ghidul de monitorizare a speciilor de plante de interes comunitar. Constanța, Dobrogea.

Milne R.I., Abbott R.J. (2002) The origin and evolution of tertiary relict floras. Advances in Botanical Research 38: 281–314. https://doi.org/10.1016/S0065-2296(02)38033-9

Neblea M.A. (2009) Phytosociological researches concerning habitats with Ligularia sibirica (L.) Cass from Meridional Carpathians. Analele Știinţifice ale Universităţii Al. I. Cuza Iaşi, s.II a. Biologie vegetală 55: 145–154.

Nobis M. (2012) Języczka syberyjska Ligularia sibirica (L.) Cass. In: Perzanowska J. (ed.) Monitoring gatunków roślin. Przewodnik metodyczny 2: 77–93. Warszawa, GIOŚ.

Păun M.M., Popescu G. (1971) Ligularia sibirica (L.) Cass. în Oltenia. Comunicări de Botanică 12: 253–257.

Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausasv J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., van der Heijden M.G.A., Sack L., Blonder B., Poschlod P., Vaieretti M.V., Conti G., Staver A.C., Aquino S., Cornelissen J.H.C. (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234. https://doi.org/10.1071/BT12225

Pielech R., Zając K., Kadej M., Malicki M., Malkiewicz A., Tarnawski D. (2017) Ellenberg’s indicator values support prediction of suitable habitat for pre-diapause larvae of endangered butterfly Euphydryas aurinia. PLoS ONE 12: e0179026. https://doi.org/10.1371/journal.pone.0179026

Procházka F., Pivničková M. (1999) Ligularia sibirica (L.) Cass. In: Čeřovský J., Feráková V., Holub J., Maglocký Š., Procházka F. (eds) Červená kniha ohrozených a vzácnych druhov rastlín a živočíchov SR a ČR, 5.Vyššie rastliny: 219. Bratislava, Príroda.

Provan J., Bennett K.G. (2008) Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution 23: 564–571. https://doi.org/10.1016/j.tree.2008.06.010

Puchalski J., Niemczyk M., Walerowski P., Podyma W., Kapler A. (2014) Seed banking of Polish endangered plants – the FlorNatur Project. Biodiversity Research and Conservation 34: 65–72. https://doi.org/10.2478/biorc-2014-0005

Putz C.M., Schmid C., Reisch C. (2015) Living in isolation – population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink). Ecology and Evolution 5: 3610–3621. https://doi.org/10.1002/ece3.1611

R Core Team (2013) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available from http://www.R-project.org/ [accessed 11 Jul. 2017].

Rewicz A., Kołodziejek J., Jakubska-Busse A. (2016) The role of anthropogenic habitats as substitutes for natural habitats: a case study on Epipactis helleborine (L.) Crantz (Orchidaceae, Neottieae). Variations in size and nutrient composition of seeds. Turkish Journal of Botany 40: 258–268. https://doi.org/10.3906/bot-1404-69

Sârbu A., Oprea A., Sârbu I. (2007) Plants from the Habitat Directive – Annexe IIb, presents in Romania. Buletinul Grădinii Botanice Iaşi 14: 23–28.

Schaffers A.P., Sýkora K.V. (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11: 225–244. https://doi.org/10.2307/3236802

Schleuning M., Matthies D. (2009) Habitat change and plant demography: assessing the extinction risk of a formerly common grassland perennial. Conservation Biology 23: 174–183. https://doi.org/10.1111/j.1523-1739.2008.01054.x

Šegulja N., Krga M. (1990) Ligularia sibirica (L.) Cass. – eine neue Art der jugoslawischen Flora. Acta Botanica Croatica 49: 137–142.

Slavík B. (2004) Ligularia Cass. In: Slavík B., Štěpánková J., Štěpánek J. (eds) Květena Česke republiky 7: 306–309. Praha, Academia.

Šmídová A., Münzbergová Z., Plačková I. (2011) Genetic diversity of a relict plant species, Ligularia sibirica (L.) Cass. (Asteraceae). Flora 206: 151–157. https://doi.org/10.1016/j.flora.2010.03.003

Stoicovici L. (1977) Stațiuni cu Ligularia sibirica (L.) Cass. f. arenosa DC. în bazinele Dornei și Bilborului, considerații fitocenologice și ecologice. Studii și cercetări de Biologie, Seria Biologie Vegetală 29: 39–45.

Stoicovici L. (1982) Răspândirea populațiilor relictare de Ligularia sibirica (L.) Cass. în R.S. România. Studii și cercetări de Biologie, Seria Biologie Vegetală 34: 14–19.

Sürmen B., Kutbay H.G., Kiliç D.D., Hüseyinova R., Kilinç M. (2014) Ellenberg’s indicator values for soil nitrogen concentration and pH in selected swamp forests in the Central Black Sea region of Turkey. Turkish Journal of Botany 38: 883–895. https://doi.org/10.3906/bot-1311-43

Taylor K., Havill D.C., Pearson J., Woodall J. (2002) Biological Flora of the British Isles. Trientalis europaea L. Journal of Ecology 90: 404–418. https://doi.org/10.1046/j.1365-2745.2002.00644.x

Vandewoestijne S., Róis A.S., Caperta A., Baguette M., Tyteca D. (2009) Effects of individual and population parameters on reproductive success in three sexually deceptive orchid species. Plant Biology 11: 454–463. https://doi.org/10.1111/j.1438-8677.2008.00125.x

Vogler F., Reisch C. (2013) Vital survivors: low genetic variation but high germination in glacial relict populations of the typical rock plant Draba aizoides. Biodiversity and Conservation 22: 1301–1316. https://doi.org/10.1007/s10531-013-0471-y

Wang M.-T., Lu N.-N., Zhao Z.-G. (2009) Effects of temperature and storage length on seed germination and the effects of light conditions on seedling establishment with respect to seed size in Ligularia virgaurea. Plant Species Biology 24: 120–126. https://doi.org/10.1111/j.1442-1984.2009.00246.x

Westoby M., Jurado M., Leishman M. (1992) Comparative evolutionary ecology of seed size. Trends in Ecology & Evolution 7: 368–372. https://doi.org/10.1016/0169-5347(92)90006-W

Wu G.-L., Du G.-Z., Shi Z.-H. (2013) Germination strategies of 20 alpine species with varying seed mass and light availability. Australian Journal of Botany 61: 404–411. https://doi.org/10.1071/BT12119

Xie T.P., Du G.Z., Zhang G.F., Zhao Z.G. (2010) Effects of inflorescence position on seed production and seedling establishment in Ligularia virgaurea. Chinese Journal of Plant Ecology 34: 418–426. https://doi.org/10.3773/j.issn.1005-264x.2010.04.007 [In Chinese, with an English abstract].

Yaqoob U., Nawchoo I.A. (2017) Impact of habitat variability and altitude on growth dynamics and reproductive allocation in Ferula jaeschkeana Vatke. Journal of King Saud University – Science 29: 19–27. https://doi.org/10.1016/j.jksus.2015.10.002

Zahariev D. (2016) Biodiversity of relict vascular plants in Bulgaria. International Journal of Research Studies in Biosciences 4: 38–51. https://doi.org/10.20431/2349-0365.0401008

Zheng Y.R., Xie Z.X., Gao Y., Jiang L.H., Shimizu H., Tobe K. (2004) Germination responses of Caragana korshinskii Kom. to light, temperature and water stress. Ecological Research 19: 553–558. https://doi.org/10.1111/j.1440-1703.2004.00668.x

For material published before 1 January 2019, all rights are reserved. Copyright holders are Meise Botanic Garden and the Royal Botanical Society of Belgium. Permission to use this material must always be obtained from the Editor in chief, via the Editorial Office.

For further information on access, permissions and re-use of papers published in Plant Ecology and Evolution, please read our Open Access policy.