Vulnérabilité des ptéridophytes au changement climatique et implications pour leur conservation au Togo (Afrique de l’Ouest)
PDF

Keywords

Pteridophytes
climatic niche
climate change
vulnerability
protected area
Togo
West Africa

How to Cite

Abotsi, K., Kokou, K., Rouhan, G. and Deblauwe, V. (2020) “Vulnérabilité des ptéridophytes au changement climatique et implications pour leur conservation au Togo (Afrique de l’Ouest)”, Plant Ecology and Evolution, 153(1), pp. 22-32. doi: 10.5091/plecevo.2020.1660.

Abstract

Contexte et objectifs – La conservation durable de la biodiversité requiert une bonne compréhension des causes de son déclin. Mis à part les activités humaines, les changements climatiques se révèlent comme la principale menace qui pèse sur la biodiversité au 21ème siècle. Notre étude vise à déterminer l’impact du changement climatique sur les Ptéridophytes au Togo.
Méthodologie – En se basant sur 2865 occurrences de Ptéridophytes couvrant toute l’Afrique de l’Ouest et regroupés en 5 groupes écologiques, les distributions actuelle et future des Ptéridophytes ont été modélisées grâce à Maxent. La capacité de conservation des aires protégées du Togo vis-à-vis de ces plantes a été évaluée.
Résultats clés – Nos résultats montrent que 9,81% du pays peut abriter simultanément l’ensemble des groupes de ptéridophytes. Les précipitations des périodes sèches, l’isothermalité et la saisonnalité de la température sont les variables climatiques qui contraignent le plus leurs niches en Afrique de l’Ouest et particulièrement au Togo. Exceptés les taxons thermophiles dont les zones climatiquement favorables devraient quasiment doubler à l’horizon 2070, les niches des autres groupes devraient se restreindre drastiquement au Togo. Seules les aires protégées du tiers sud des Monts Togo pourront garantir la conservation des niches climatiques actuelles et futures des ptéridophytes dans le pays.
Conclusions – Le sud des Monts Togo constituera probablement un refuge climatique pour les ptéridophytes au Togo. Toutefois, la faiblesse de l’étendue des aires protégées dans cette partie du pays pourrait constituer une source de vulnérabilité pour ces plantes.

 


Vulnerability of pteridophytes to climate change and implications for their conservation in Togo (west Africa)

 

Background and aims – The sustainable conservation of biodiversity requires a good understanding of the causes of its decline. Apart from human activities, climate change is the major threat to global biodiversity during the 21st century. Our study aims to determine the impact of climate change on pteridophytes in Togo.
Methods – Based on 2865 occurrences of pteridophytes covering West Africa and grouped into 5 ecological groups, current and future distributions of pteridophytes were modelized using Maxent. The conservation capacity of Togolese protected areas for these plants was assessed.
Key results – Our results show that 9.81% of the country can shelter simultaneously all groups of pteridophytes. Precipitations of the driest periods, isothermality and temperature seasonality are the climatic variables which constrain the most their niche in West Africa and particularly in Togo. Apart from thermophilic taxa whose climatically suitable niche is expected to nearly double by 2070, niche of all other group should be drastically restricted in Togo. Only protected areas in the southern third of Togo Mountains would guarantee current and future climatic niches for pteridophytes in the country.
Conclusions – Southern Togo Mountains will probably constitute a climatic refugium for Pteridophytes in Togo. However, the small extent of protected areas in this part of the country would be a source of vulnerability for these plants.

https://doi.org/10.5091/plecevo.2020.1660
PDF

References

Abotsi K.E. (2018) The Pteridophytes from Togo (West Africa). Version 1.2. Biodiversity Data Journal. Occurrence dataset. https://doi.org/10.15468/jjecvf accessed via GBIF.org on 2019-12-11.

Abotsi K.E., Kokou K., Dubuisson J.-Y., Rouhan G. (2018) A first checklist of the Pteridophytes of Togo (West Africa). Biodiversity Data Journal 6: e24137. https://doi.org/10.3897/BDJ.6.e24137

Abotsi K.E., Radji A., Rouhan G., Dubuisson J.-Y., Kokou K. (2015) The Pteridaceae family diversity in Togo. Biodiversity Data Journal 3: e5078. https://doi.org/10.3897/BDJ.3.e5078

Aldasoro J.J., Cabezas F., Aedo C. (2004) Diversity and distribution of ferns in sub-Saharan Africa, Madagascar and some islands of the South Atlantic. Journal of Biogeography 31(10): 1579–1604. https://doi.org/10.1111/j.1365-2699.2004.01106.x

Alkemade R., Oorschot M. van, Miles L., Nellemann C., Bakkenes M., Brink B. ten (2009) GLOBIO3: A framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12(3): 374–390. https://doi.org/10.1007/s10021-009-9229-5

Araújo M.B., Alagador D., Cabeza M., Nogués-Bravo D., Thuiller W. (2011) Climate change threatens European conservation areas. Ecology Letters 14(5): 484–492. https://doi.org/10.1111/j.1461-0248.2011.01610.x

Araújo M.B., Cabeza M., Thuiller W., Hannah L., Williams P.H. (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10(9): 1618–1626. https://doi.org/10.1111/j.1365-2486.2004.00828.x

Araújo M.B., Guisan A. (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography 33(10): 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x

Atsri H.K., Konko Y., Cuni-Sanchez A., Abotsi K.E., Kokou K. (2018) Changes in the West African forest-savanna mosaic, insights from central Togo. PLOS ONE 13(10): e0203999. https://doi.org/10.1371/journal.pone.0203999

Baldwin R.A. (2009) Use of maximum entropy modeling in wildlife research. Entropy 11(4):854–866. https://doi.org/10.3390/e11040854

Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15(4): 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x

Bergeron A., Pellerin S. (2014) Pteridophytes as indicators of urban forest integrity. Ecological Indicators 38: 40–49. https://doi.org/10.1016/j.ecolind.2013.10.015

Brooks T.M., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Rylands A.B., Konstant W.R., Flick P., Pilgrim J., Oldfield S., Magin G., Hilton‐Taylor C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology 16(4): 909–923. https://doi.org/10.1046/j.1523-1739.2002.00530.x

Bruner A.G., Gullison R.E., Rice R.E., da Fonseca G.A.B. (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291(5501): 125–128. https://doi.org/10.1126/science.291.5501.125

Bystriakova N., Peregrym M., Dragicevic S. (2015) Effect of environment on distributions of rock ferns in the Mediterranean climate: The case of the genus Asplenium in Montenegro. Flora - Morphology, Distribution, Functional Ecology of Plants 215: 84–91. https://doi.org/10.1016/j.flora.2015.07.003

Carey C., Dudley N., Stolton S. (2000) Squandering paradise? Gland, Switzerland, WWF International.

Carnaval A.C., Hickerson M.J., Haddad C.F.B., Rodrigues M.T., Moritz C. (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323(5915): 785–789. https://doi.org/10.1126/science.1166955

Cotillon S.E. (2017) West Africa land use and land cover time series. FactSheet 2017–3004. In: USGS (ed.) U.S. Geological Survey Series No. 2017–3004. Reston, VA. Available at http://pubs.er.usgs.gov/publication/fs20173004 [accessed 11 Nov. 2019].

Dauby G., Zaiss R., Blach-Overgaard A., Catarino L., Damen T., Deblauwe V., Dessein S., Dransfield J., Droissart V., Duarte M.C., Engledow H., Fadeur G., Figueira R., Gereau R.E., Hardy O.J., Harris D.J., de Heij J., Janssens S., Klomberg Y., Ley A.C., Mackinder B.A., Meerts P., van de Poel J.L., Sonké B., Sosef M.S.M., Stévart T., Stoffelen P., Svenning J.-C., Sepulchre P., van der Burgt X., Wieringa J.J., Couvreur T.L.P. (2016) RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74: 1–18. https://doi.org/10.3897/phytokeys.74.9723

Dobrowski S.Z. (2011) A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17(2): 1022–1035. https://doi.org/10.1111/j.1365-2486.2010.02263.x

Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., A. Loiselle B., Manion G., Moritz C., Nakamura M., Nakazawa Y., McC. Overton J.McC.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Ern H. (1979) Die Vegetation Togos. Gliederung, Gefährdung, Erhaltung Willdenowia 9(2):295–312.

Fick S.E., Hijmans R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. https://doi.org/10.1002/joc.5086

Hansen L., Hoffman J., Drews C., Mielbrecht E. (2010) Designing climate-smart conservation: guidance and case studies. Conservation Biology 24(1): 63–69. https://doi.org/10.1111/j.1523-1739.2009.01404.x

Hawkins B.A., Field R., Cornell H.V., Currie D.J., Guégan J.-F., Kaufman D.M., Kerr J.T., Mittelbach G.G., Oberdorff T., O’Brien E.M., Porter E.E., Turner J.R.G. (2003) Energy, water and broad-scale geographic patterns of species richness. Ecology 84(12): 3105–3117. https://doi.org/10.1890/03-8006

Hernandez P.A., Graham C.H., Master L.L., Albert D.L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5): 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x

Heubes J., Schmidt M., Stuch B., García Márquez J.R., Wittig R., Zizka G., Thiombiano A., Sinsin B., Schaldach R., Hahn K. (2013) The projected impact of climate and land use change on plant diversity: an example from West Africa. Journal of Arid Environments 96: 48–54. https://doi.org/10.1016/j.jaridenv.2013.04.008

Hijmans R.J. (2019) raster: Geographic data analysis and modeling. (Version 2.8-19). Available at https://CRAN.R-project.org/package=raster [accessed 11 Dec. 2019].

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. (2005) Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15): 1965–1978. https://doi.org/10.1002/joc.1276

IPCC (2013) Summary for policymakers. In: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds) Climate change: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK & New York, USA, Cambridge University Press.

IUCN, UNEP (2015) Ecosystem profile: Guinean forests of West Africa biodiversity hotspot. Critical Ecosystem Partnership Fund. https://doi.org/10.13140/RG.2.1.1724.8889

Jones M.M., Ferrier S., Condit R., Manion G., Aguilar S., Pérez R. (2013) Strong congruence in tree and fern community turnover in response to soils and climate in central Panama. Journal of Ecology 101(2): 506–516. https://doi.org/10.1111/1365-2745.12053

Kreft H., Jetz W. (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America 104(14): 5925–5930. https://doi.org/10.1073/pnas.0608361104

Kreft H., Jetz W., Mutke J., Barthlott W. (2010) Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33(2): 408–419. https://doi.org/10.1111/j.1600-0587.2010.06434.x

Le Saout S., Hoffmann M., Shi Y., Hughes A., Bernard C., Brooks T.M., Bertzky B., Butchart S.H.M., Stuart S.N., Badman T., Rodrigues A.S.L. (2013) Protected areas and effective biodiversity conservation. Science 342(6160): 803–805. https://doi.org/10.1126/science.1239268

Leadley P.W., Krug C.B., Alkemade R., Pereira H.M., Sumaila U.R., Walpole M., Marques A., Newbold T., Teh L.S., van Kolck J. (2014) Progress towards the Aichi biodiversity targets: an assessment of biodiversity trends, policy scenarios and key actions (Global Biodiversity Outlook 4). CBD Technical Series No. 78. Montreal, Secretariat of the Convention on Biological Diversity. Available at https://www.cbd.int/doc/publications/cbd-ts-78-en.pdf [accessed 11 Dec. 2019].

Leadley P.W., Pereira H.M., Alkemade R., Fernandez-Manjarrés J.F., Proença V., Scharlemann J.P.W., Walpole M. (2010) Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. CBD Technical Series No. 50, Montreal, Secretariat of the Convention on Biological Diversity. Available at https://www.cbd.int/doc/publications/cbd-ts-50-en.pdf [accessed 11 Dec. 2019].

Mansourian S., Belokurov A., Stephenson P.J. (2009) Rôle des aires protégées forestières dans l’adaptation aux changements climatiques. Unasylva 60(231/232): 63–69.

McSweeney C.F., Jones R.G., Lee R.W., Rowell D.P. (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dynamics 44(11): 3237–3260. https://doi.org/10.1007/s00382-014-2418-8

MERF (2014) Stratégie et plan d’action national pour la biodiversité du Togo 2011-2020. Préparé par Ministère de l’Environnement et des Ressources Forestières. Available at http://tg.chm-cbd.net/implementation/strat_cbd/strategie-et-plan-d-action-national-pour-la-biodiversite-du-togo [accessed 14 Oct. 2018].

Merow C., Smith M.J., Silander J.A. (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36(10): 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water synthesis. Washington DC, World Resources Institute. Available at http://library.wur.nl/WebQuery/wurpubs/344031 [accessed 11 Dec. 2019].

Phillips S.J., Anderson R.P., Dudík M., Schapire R.E., Blair M.E. (2017) Opening the black box: an open-source release of Maxent. Ecography 40(7): 887–893. https://doi.org/10.1111/ecog.03049

Phillips S.J., Anderson R.P., Schapire R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips S.J., Dudík M., Schapire R.E. (2018) Maxent software for modeling species niches and distributions. Version 3.4.1. Available at http://biodiversityinformatics.amnh.org/open_source/maxent/ [accessed 5 Jun. 2018].

PPG I (2016) A community-derived classification for extant lycophytes and ferns: PPG I. Journal of Systematics and Evolution 54(6): 563–603. https://doi.org/10.1111/jse.12229

SCBD (2018) Togo - Country profile: biodiversity facts. Available at https://www.cbd.int/countries/profile/default.shtml?country=tg#facts [accessed 12 Jan. 2018].

Swets J.A. (1988) Measuring the accuracy of diagnostic systems. Science 240(4857): 1285–1293. https://doi.org/10.1126/science.3287615

Thomas B.A. (1999) Some commercial uses of pteridophytes in Central America. American Fern Journal 89(2): 101–105. https://doi.org/10.2307/1547344

Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., Siqueira M.F. de, Grainger A., Hannah L., Hughes L., Huntley B., Jaarsveld A.S. van, Midgley G.F., Miles L., Ortega-Huerta M.A., Peterson A.T., Phillips O.L., Williams S.E. (2004) Extinction risk from climate change. Nature 427(6970): 145–148. https://doi.org/10.1038/nature02121

Thuiller W., Guéguen M., Renaud J., Karger D.N., Zimmermann N.E. (2019) Uncertainty in ensembles of global biodiversity scenarios. Nature Communications 10(1): 1–9. https://doi.org/10.1038/s41467-019-09519-w

Van Zonneveld M., Koskela J., Vinceti B., Jarvis A. (2009) Impact of climate change on the distribution of tropical pines in Southeast Asia. Unasylva 231(232): 24–29.

Wisz M.S., Hijmans R.J., Li J., Peterson A.T., Graham C.H., Guisan A. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions 14(5): 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.