Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae)
Cover of volume 152 issue 1 of Plant Ecology and Evolution
PDF

Supplementary Files

Supplementary File 1
Supplementary File 2

Keywords

Elliptic Fourier Analyis
geometric morphometrics
inselbergs
linear morphometrics
Pseudolaelia aguadocensis
Pseudolaelia oliveirana
Pseudolaelia regentii
Pseudolaelia vellozicola
taxonomy

How to Cite

Menini Neto, L., van den Berg, C. and Forzza, R. (2019) “Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae)”, Plant Ecology and Evolution, 152(1), pp. 53-67. doi: 10.5091/plecevo.2019.1531.

Abstract

Background and aimsPseudolaelia is a genus endemic to eastern Brazil, with 12 accepted species predominantly distributed across granitic inselbergs of the Brazilian Atlantic Forest. The aim of the present study was to distinguish between the very similar taxa P. aguadocensis, P. oliveirana, P. regentii and P. vellozicola, using morphometric data acquired as linear measurements and outlines capture with Elliptic Fourier Analysis (EFA) of the floral parts.
Material and methods – We sampled 208 specimens from 11 natural populations of the above taxa. We measured 20 floral variables and for the EFA, and we extracted 24 shape variables from the Fourier coefficient matrices, which describe the outlines of the floral parts. In both cases the data were analyzed with multivariate methods (both ordination and clustering).
Key results – We could not find morphological discontinuities with sufficient magnitude to consider P. aguadocensis, P. oliveirana and P. regentii as distinct species from P. vellozicola.
Conclusions – We propose that P. vellozicola should be considered a polymorphic and widely distributed species, generally supported by both methods.

https://doi.org/10.5091/plecevo.2019.1531
PDF

References

Andrade I.M., Mayo S.J., Kirkup D., van den Berg C. (2008) Comparative morphology of populations of Monstera Adans. (Araceae) from natural forest fragments in Northeast Brazil using Elliptic Fourier Analysis of leaf outlines. Kew Bulletin 63: 193–211. https://doi.org/10.1007/s12225-008-9032-z

Andrade I.M., Mayo S.J., Kirkup D., van den Berg C. (2010) Elliptic Fourier Analysis of leaf outline shape in forest fragment populations of Anthurium sinuatum and A. pentaphyllum (Araceae) from Northeast Brazil. Kew Bulletin 65: 3–20. https://doi.org/10.1007/s12225-010-9188-1

Assogbagdjo A.E., Kyndt T., Sinsin B., Gheysen G., Van Damme P. (2006) Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa). Annals of Botany 97: 819–830. https://doi.org/10.1093/aob/mcl043

Baker A.J.M., Dalby D.H. (1980) Morphological variation between some isolated populations of Silene maritima With. in the British Isles with particular reference to inland populations on metalliferous soils. New Phytologist 84: 123–138. https://doi.org/10.1111/j.1469-8137.1980.tb00755.x

Barbará T., Martinelli G., Fay M.F., Mayo S.J., Lexer C. (2007) Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Molecular Ecology 16: 1981–1992. https://doi.org/10.1111/j.1365-294X.2007.03272.x

Bateman R.M., Farrington O.S. (1989) Morphometric comparison of populations of Orchis simia Lam. (Orchidaceae) from Oxfordshire and Kent. Botanical Journal of the Linnean Society 100: 205–218. https://doi.org/10.1111/j.1095-8339.1989.tb01718.x

Bernardos S., Crespí A., Del Rey F., Amich F. (2005) The section Pseudophrys (Ophrys, Orchidaceae) in the Iberian Peninsula: a morphometric and molecular analysis. Botanical Journal of the Linnean Society 148: 359–375. https://doi.org/10.1111/j.1095-8339.2005.00403.x

Borba E.L., Shepherd G.J., van den Berg C., Semir J. (2002) Floral and vegetative morphometrics of five Pleurothallis (Orchidaceae) species: correlation with taxonomy, phylogeny, genetic variability and pollination systems. Annals of Botany 90: 219–230. https://doi.org/10.1093/aob/mcf168

Borba E.L., Funch R.R., Ribeiro P.L., Smidt E.C., Silva-Pereira V. (2007) Demography, and genetic and morphological variability of the endangered Sophronitis sincorana (Orchidaceae) in the Chapada Diamantina, Brazil. Plant Systematics and Evolution 267: 129–146. https://doi.org/10.1007/s00606-007-0555-9

Campacci M.A. (2016) Coletânea de Orquídeas Brasileiras 12. Taubaté, Editora Brasil Orquídeas.

Cardim D.C., Carlini-Garcia L.A., Mondin M., Martins M., Veasey E.A., Ando A. (2001) Variabilidade intra-específica em cinco populações de Oncidium varicosum (Orchidaceae – Oncidiinae) em Minas Gerais. Revista Brasileira de Botânica 24: 553–560. https://doi.org/10.1590/S0100-84042001000500010

Carlini-Garcia L.A., van den Berg C., Martins O.S. (2002) A morphometric analysis of floral characters in Miltonia spectabilis and Miltonia spectabilis var. moreliana (Maxillarieae: Oncidiinae). Lindleyana 17: 122–129.

Castro Neto V.P., Chiron G.R. (2009) Contribution à la connaissance dês orchidées du Brésil. XV: deux nouvelles espèces de Pseudolaelia de l’état d’Espírito Santo (Brésil). Richardiana 9: 20–28.

Castro Neto V.P., Marçal S. (2007) Une nouvelle espèce de Pseudolaelia de Bahia (Brésil). Richardiana 8: 6–11.

Dayrat B. (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x

Elewa A.M.T. (2010) Morphometrics for nonmorphometricians. Heildelberg, Springer-Verlag. https://doi.org/10.1007/978-3-540-95853-6

Ellison A.M., Buckley H.L., Miller T.E., Gotelli N.J. (2004) Morphological variation in Sarracenia purpurea (Sarraceniaceae): geographic, environmental, and taxonomic correlates. American Journal of Botany 91: 1930–1935. https://doi.org/10.3732/ajb.91.11.1930

Etterson J.R., Delf D.E., Craing T.P., Ando Y., Ohgushi T. (2008) Parallel patterns of clinal variation in Solidago altissima in its native range in central USA and its invasive range in Japan. Botany 86: 91–97. https://doi.org/10.1139/B07-115

Everitt B.S. (1978) Graphical techniques for multivariate data. Portsmouth, Heinemann Educational Publishers.

Fici S., Lo Presti R.M. (2003) Variation in the Senecio aethnensis group (Asteraceae) along an altitudinal gradient. Plant Biosystems 137: 305–312. https://doi.org/10.1080/11263500312331351551

Fritsch P.W., Lucas S.D. (2000) Clinal variation in the Halesia carolina complex (Styracaceae). Systematic Botany 25: 197–210. https://doi.org/10.2307/2666639

Fritsch P.W., Schiller A.M., Larson K.W. (2009) Taxonomic implications of morphological variation in Cercis canadensis (Fabaceae) from Mexico and adjacent parts of Texas. Systematic Botany 34: 510–520. https://doi.org/10.1600/036364409789271254

Frontier S. (1976) Étude de la décroissance des valeurs propres dans une analyse en composantes principales: comparaison avec le modèle du bâton brisé. Journal of Experimental Marine Biology and Ecology 25: 67–75. https://doi.org/10.1016/0022-0981(76)90076-9

Gardiner L.M., Hawkins J.A., Roberts D.L. (2005) Species delimitation in Vanda Sect. Cristatae Lindl. (Orchidaceae): a morphometric approach. Selbyana 26: 347–353.

Goldman D.H., van den Berg C., Griffith M.P. (2004) Morphometric circumscription of species and infraspecific taxa in Calopogon R.Br. (Orchidaceae). Plant Systematics and Evolution 247: 37–60. https://doi.org/10.1007/s00606-004-0137-z

Hammer Ø. (2010) PAST 2.04 - Paleontological Statistics [online]. Available from http://folk.uio.no/ohammer/past/ [accessed 13 Mar. 2014].

Haraštová-Sobotková M., Jersáková J., Kindlmann P., Čurn L. (2005) Morphometric and genetic divergence among populations of Neotinea ustulata (Orchidaceae) with different flowering phenologies. Folia Geobotanica 40: 385–405. https://doi.org/10.1007/BF02804287

Henderson A. (2006) Traditional morphometrics in plant systematics and its role in palm systematics. Botanical Journal of the Linnean Society 151: 103–111. https://doi.org/10.1111/j.1095-8339.2006.00526.x

Hoehne F.C. (1934) Nova espécie de Orchidaceae, Schomburgkia vellozicola. Boletim de Agricultura (São Paulo) 34: 620–623.

Kawabata S., Yokoo M., Nii K. (2009) Quantitative analysis of corolla shapes and petal contours in single-flower cultivars of lisianthus. Scientia horticulturae 121: 206–212. https://doi.org/10.1016/j.scienta.2009.01.024

Kiełtyk P., Mirek Z. (2014) Taxonomy of the Solidago virgaurea Group (Asteraceae) in Poland, with special reference to variability along an altitudinal gradient. Folia Geobotanica 49: 259–282. https://doi.org/10.1007/s12224-013-9180-2

Kofidis G., Bosabalidis A.M., Moustakas M. (2007) Combined effect of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae). Environmental and Experimental Botany 60: 69–76. https://doi.org/10.1016/j.envexpbot.2006.06.007

Kores P.J., Molvray M., Darwin S.P. (1993) Morphometric variation in three species of Cyrtostylis (Orchidaceae). Systematic Botany 18: 274–282. https://doi.org/10.2307/2419403

Lestrel P.E. (1997) Fourier descriptors and their applications in biology. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511529870

Lowry D.B., Rockwood R.C., Willis J.H. (2008) Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evolution 62: 2196–2214. https://doi.org/10.1111/j.1558-5646.2008.00457.x

Magrini S., Scoppola A. (2010) Geometric morphometrics as a tool to resolve taxonomic problems: the case of Ophioglossum species (ferns). In: Nimis P.L., Lebbe R.V. (eds) Tools for identifying biodiversity: progress and problems. Proceedings of the International Congress, Paris, September 20–22, 2010: 251–256. Trieste, EUT Edizioni Università di Trieste.

Manly B.F.J. (1994) Multivariate statistical methods, a primer. 2nd Ed. London, Chapman and Hall.

McLellan T. (2000) Geographic variation and plasticity of leaf shape and size in Begonia dregei and Begonia homonyma (Begoniaceae). Botanical Journal of the Linnean Society 132: 79–95. https://doi.org/10.1006/bojl.1999.0292

Menini Neto L. (2011) Sistemática de Pseudolaelia Porto & Brade (Orchidaceae). PhD Thesis, Escola Nacional de Botânica Tropical, Rio de Janeiro, Brasil.

Menini Neto L., van den Berg C., Forzza R.C. (2011) O gênero Pseudolaelia (Orchidaceae: Laeliinae). Rapid Color Guides - 439, Field Museum of Chicago [online]. Available from http://fieldguides.fieldmuseum.org/sites/default/files/rapid-color-guides-pdfs/439_1.pdf [accessed 15 Jan. 2017].

Menini Neto L., Forzza R.C., van den Berg C. (2013) Taxonomic revision of Pseudolaelia Porto & Brade (Laeliinae, Orchidaceae). Acta Botanica Brasilica 27: 418–435. https://doi.org/10.1590/S0102-33062013000200015

Nishizawa T., Kinoshita E., Yakura K., Shimizu T. (2001) Morphological variation of the head characters in Solidago virgaurea L. inhabiting three mountains in central Honshu. Journal of Phytogeography and Taxonomy 49: 117–127.

Peakall R., Bower C.C., Logan A.E., Nicol H.I. (1997) Confirmation of the hybrid origin of Chiloglottis × pescottiana (Orchidaceae: Diurideae). I. Genetic and morphometric evidence. Australian Journal of Botany 45: 839–855. https://doi.org/10.1071/BT96081

Peres-Neto P.R. (1995) Introdução às análises morfométricas. Oecologia Brasiliensis 2: 57–89.

Pinheiro F., Barros F. (2007) Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nordic Journal of Botany 25: 129–136. https://doi.org/10.1111/j.0107-055X.2007.00010.x

Pinheiro F., Barros F. (2009) Morphometric analysis of the Brasiliorchis picta complex (Orchidaceae). Revista Brasileira de Botânica 32: 11–21. https://doi.org/10.1590/S0100-84042009000100003

Ponsie M.E., Johnson S.D., Edwards T.J. (2009) A morphometric analysis of the Bonatea speciosa complex (Orchidaceae) and its implication for species boundaries. Nordic Journal of Botany 27: 166–177. https://doi.org/10.1111/j.1756-1051.2008.00259.x

Porto P.C., Brade A.C. (1935) Orchidaceae Novae Brasiliensis I. Archivos do Instituto de Biologia Vegetal do Rio de Janeiro 2: 207–216.

Premoli A.C. (1996) Leaf architecture of South American Nothofagus (Nothofagaceae) using traditional and new methods in morphometrics. Botanical Journal of the Linnean Society 121: 25–40. https://doi.org/10.1111/j.1095-8339.1996.tb00743.x

Ribeiro P.L., Borba E.L., Smidt E.C., Lambert S.M., Schnadelbach A.S., van den Berg C. (2008) Genetic and morphological variation in the Bulbophyllum exaltatum (Orchidaceae) complex occurring in the Brazilian ‘‘campos rupestres’’: implications for taxonomy and biogeography. Plant Systematics and Evolution 270: 109–137. https://doi.org/10.1007/s00606-007-0603-5

Rohlf F.J. (1990) Morphometrics. Annual Review of Ecology and Systematics 21: 299–316. https://doi.org/10.1146/annurev.es.21.110190.001503

Rohlf F.J. (2000) NTSYSpc: Numerical Taxonomy System. Version 2.1. Setauket, NY, Exeter Publishing, Ltd. Available from http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html [accessed 25 Apr. 2010].

Rohlf F.J. (2008) tpsDIG digitizing software. Version 2.12. Available from http://life.bio.sunysb.edu/morph/ [accessed 25 Apr. 2010].

Sapir Y., Shmida A., Fragman O., Comes H.P. (2002) Morphological variation of the Oncocyclus irises (Iris: Iridaceae) in the southern Levant. Botanical Journal of the Linnean Society 139: 369–382. https://doi.org/10.1046/j.1095-8339.2002.00067.x

Shaw P.J.A. (1998) Morphometric analyses of mixed Dactylorhiza colonies (Orchidaceae) on industrial waste sites in England. Botanical Journal of the Linnean Society 128: 385–401. https://doi.org/10.1111/j.1095-8339.1998.tb02128.x

Shepherd J.G. (2006) Fitopac. Version 1.64. Campinas, Universidade de Campinas. Available from https://pedroeisenlohr.webnode.com.br/fitopac/ [accessed 10 Dec. 2018].

Shimono Y., Watanabe M., Hirao A.S., Wada N., Kudo G. (2009) Morphological and genetic variations of Potentilla matsumurae (Rosaceae) between fellfield and snowbed populations. American Journal of Botany 96: 728–737. https://doi.org/10.3732/ajb.0800242

Shipunov A.B., Fay M.F., Pillon Y., Bateman R.M., Chase M.W. (2004) Dactylorhiza (Orchidaceae) in European Russia: combined molecular and morphological analysis. American Journal of Botany 91: 1419–1426. https://doi.org/10.3732/ajb.91.9.1419

Shipunov A.B., Bateman R.M. (2005) Geometric morphometrics as a tool for understanding Dactylorhiza (Orchidaceae) diversity in European Russia. Biological Journal of the Linnean Society 85: 1–12. https://doi.org/10.1111/j.1095-8312.2005.00468.x

Shipunov A.B., Fay M.F., Chase M.W. (2005) Evolution of Dactylorhiza baltica (Orchidaceae) in European Russia: evidence from molecular markers and morphology. Biological Journal of the Linnean Society 147: 257–274. https://doi.org/10.1111/j.1095-8339.2005.00380.x

Simo-Droissart M., Micheneau C., Sonké B., Droissart V., Plunkett G.M., Lowry II P.P., Hardy O.J., Stévart T. (2013) Morphometrics and molecular phylogenetics of the continental African species of Angraecum section Pectinaria (Orchidaceae). Plant Ecology and Evolution 146: 295–309. https://doi.org/10.5091/plecevo.2013.900

Simo-Droissart M., Sonké B., Droissart V., Micheneau C., Lowry II P.P., Hardy O.J., Plunkett G.M., Stévart T. (2016) Morphometrics and molecular phylogenetics of Angraecum section Dolabrifolia (Orchidaceae, Angraecinae). Plant Systematics and Evolution 302: 1027–1045. https://doi.org/10.1007/s00606-016-1315-5

Slice D. (2008) Morpheus et al. Multiplatform software for morphometric research. Available from http://morphlab.sc.fsu.edu/software/morpheus/ [accessed 10 Dec. 2018].

Sosa V., De Luna E. (2005) Morphometrics and character state recognition for cladistic analyses in the Bletia reflexa complex (Orchidaceae). Plant Systematics and Evolution 212: 185–213. https://doi.org/10.1007/BF01089739

Swofford D.L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Sinauer Associates.

Thiers B. (continuously updated) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium [online]. Available from http://sweetgum.nybg.org/ih/ [accessed 25 Apr. 2018].

Trovó M., Sano P.T., Winkworth R. (2008) Morphology and environment: geographic distribution, ecological disjunction, and morphological variation in Actinocephalus polyanthus (Bong.) Sano (Eriocaulaceae). Feddes Repertorium 119: 634–643. https://doi.org/10.1002/fedr.200811189

Tsiftsis S. (2016) Morphological variability of Himantoglossum s.s. (Orchidaceae) in Greece. Phytotaxa 245: 17–30. https://doi.org/10.11646/phytotaxa.245.1.2

Tyteca D., Gathoye J.L. (1993) On the morphological variability of Dactylorhiza praetermissa (Druce) Soó (Orchidaceae). Belgian Journal of Botany 126: 81–99.

Volkova P.A., Shipunov A.B. (2007) Morphological variation of Nymphaea (Nymphaeaceae) in European Russia. Nordic Journal of Botany 25: 329–338. https://doi.org/10.1111/j.0107-055X.2007.00140.x

Yoshioka Y., Iwata H., Ohsawa R., Ninomiya S. (2004) Analysis of petal shape variation of Primula sieboldii by elliptic Fourier descriptors and principal component analysis. Annals of Botany 94: 657–664. https://doi.org/10.1093/aob/mch190

Yoshioka Y., Iwata H., Hase N., Matsumura S., Ohsawa R., Ninomiya S. (2006) Genetic combining ability of petal shape in garden pansy (Viola x wittrockiana Gams) based on image analysis. Euphytica 151: 311–319. https://doi.org/10.1007/s10681-006-9151-2

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.