Mating system and female reproductive success of the endemic and endangered epiphyte Rhynchostele cervantesii (Orchidaceae) in a cloud forest in Michoacan, Mexico
PDF

Keywords

cloud forest
cross-pollination
emasculation
mating system
open-pollination
reproductive success
self-pollination
spontaneous-self-pollination

How to Cite

Magaña Lemus, R., Ávila-Díaz, I. and Herrerías Diego, Y. (2021) “Mating system and female reproductive success of the endemic and endangered epiphyte Rhynchostele cervantesii (Orchidaceae) in a cloud forest in Michoacan, Mexico”, Plant Ecology and Evolution, 154(1), pp. 56-62. doi: 10.5091/plecevo.2021.1551.

Abstract

Background and aims – The Orchidaceae family is vulnerable, because of the destruction of their habitat, as well as the extraction of individuals from natural populations. This is the case of the genus Rhynchostele Rchb.f.; among the actions considered important for appropriate conservation strategies for this genus is the generation of fundamental knowledge, such as on its reproductive biology. The objective of this work is to understand the mating system and reproductive success of Rhynchostele cervantesii, an endangered epiphytic orchid endemic to Mexico.
Material and methods – Manual and open-pollination treatments were conducted during 2014 and 2015 in a cloud forest in Michoacan, Mexico. In each period, 30 to 40 randomly selected inflorescences were subjected to the following treatments: a) spontaneous-self-pollination, b) emasculation, c) self-pollination, d) cross-pollination, and e) open-pollination. The developed fruits were counted and harvested, the viability of the seeds was determined, through the observation and evaluation of embryos using microscopy.
Key results – Significant differences were recorded between the treatments in both 2014 and 2015, with higher fruit production in cross-pollination than in self-pollination and natural-pollination. There were significant differences in seed viability, with higher values for seeds from open-pollination and cross-pollination and lower values for seeds from self-pollination.
ConclusionsRhynchostele cervantesii is a species that requires pollinators for sexual reproduction because there is no fruit production with spontaneous-self-pollination. Under pollen limitation, the fruit set of natural pollination was a lot lower than in cross-pollination although fruits were the same quality. R. cervantesii had a mixed mating system with a tendency to exogamy, presenting high values of female reproductive success compared to other tropical epiphytic orchid species reported in the literature.

https://doi.org/10.5091/plecevo.2021.1551
PDF

References

Ackerman J.D., Rodriguez-Robles J.A. & Melendez E.J. 1994. A meager nectar offering by an epiphytic orchid is better than nothing. Biotropica 26(1): 44–49. https://doi.org/10.2307/2389109

Ávila-Díaz I. & Oyama K. 2007. Conservation genetics of an endemic and endangered epiphytic Laelia speciosa (Orchidaceae). American Journal of Botany 94(2): 184–193. https://doi.org/10.3732/ajb.94.2.184

Ávila-Díaz I., Oyama K., Gómez-Alonso C. & Salgado-Garciglia R. 2009. In vitro propagation of the endangered orchid Laelia speciosa. Plant Cell, Tissue and Organ Culture 99(3): 335–343. https://doi.org/10.1007/s11240-009-9609-8

Borba E.L., Barbosa A.R., Cabral de Melo M., Gontijo S.L. & Ornellas de Oliveira H.E. 2011. Mating systems in the Pleurothallidinae (Orchidaceae): evolutionary and systematic implications. Lankesteriana 11(3): 207–221. https://doi.org/10.15517/lank.v11i3.18275

Bawa K.S. & Beach J.H. 1981. Evolution of sexual systems in flowering plants. Annals of the Missouri Botanical Garden 68(2): 254–274. https://doi.org/10.2307/2398798

Camacho-Domínguez E. & Ávila-Díaz I. 2010. Mating system and female reproductive success of the endemic, epiphytic Prosthechea aff. karwinskii (Orchidaceae). Lankesteriana 11(3): 366. https://doi.org/10.15517/lank.v11i3.18300

CaraDonna P.J. & Ackerman J.D. 2012. Reproductive assurance for a rewardless epiphytic orchid in Puerto Rico: Pleurothallis ruscifolia (Orchidaceae, Pleurothallidinae). Caribbean Journal of Science 46(2–3): 249–257. https://doi.org/10.18475/cjos.v46i2.a13

CONABIO 2019. Enciclovida. Mexico, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Available from http://enciclovida.mx/ [accessed 27 Jun. 2019].

De la Torre Llorente D. 2018. Conservation status of the family Orchidaceae in Spain based on European, national, and regional catalogues of protected species. The Scientific World Journal 2018: 7958689. https://doi.org/10.1155/2018/7958689

Domínguez Gil I. 2015. Listado y caracterización ecológica de las orquídeas epifitas del predio de Tenderio, de la comunidad Indígena de Santiago Tingambato, Michoacán, México. Licentiate thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.

Dressler R.L. 1981. The orchids: natural history and classification. Harvard University Press, Cambridge, Massachusetts.

Espejo S.A., García C.J., López F.A.R., Jiménez-Machorro R. & Sánchez-Saldaña L. 2002. Orquídeas del Estado de Morelos. First edition. Asociación Mexicana de Orquideología, Mexico.

Fay M.F., Pailler T. & Dixon K.W. 2015. Orchid conservation: making the links. Annals of Botany 116(3): 377–379. https://doi.org/10.1093/aob/mcv142

Gamisch A., Fischer G.A. & Comes H.P. 2014. Recurrent polymorphic mating type variation in Madagascan Bulbophyllum species (Orchidaceae) exemplifies a high incidence of auto-pollination in tropical orchids. Botanical Journal of the Linnean Society 175(2): 242–258. https://doi.org/10.1111/boj.12168

Gigord L.D.B., Macnair M.R. & Smithson A. 2001. Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soo. Proceedings of the National Academy of Sciences of the United States of America 98(11): 6253–6255. https://doi.org/10.1073/pnas.111162598

Hágsater E., Soto-Arenas M.A., Salazar-Chávez G.A., Jiménez-Machorro J., López-Rosas M.A. & Dressler R.L. 2005. Las orquídeas de México. Instituto Chinoín, Mexico.

Haleigh R. & Wagner V. 2018. Orchid pollination biology. Environmental Horticulture Department, UF/IFAS Extension, document ENH1260. Available from https://edis.ifas.ufl.edu/ep521 [accessed 28 Sep. 2020].

INEGI 2005. Serie III. Mapa de tipos de vegetación. Aguascalientes, Instituto de Estadística Geografía e Informática. Available from https://www.inegi.org.mx/temas/usosuelo/ [accessed 13 Jul. 2017].

Johnson S.D., Steiner K.E., Whitehead V.B. & Vogelpoel L. 1998. Pollination ecology and maintenance of species integrity in co-occurring Disa racemosa L. f. and Disa venosa Sw. (Orchidaceae) in South Africa. Annals of the Missouri Botanical Garden 85: 231–241.

Kalisz S., Vogler D.W. & Hanley K.M. 2004. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430(7002): 884–887. https://doi.org/10.1038/nature02776

Knight T.M., Steets J.A., Vamosi J.C., Mazer S.J., Burd M., Campbell D.R., Dudash M.R., Johnston M.O., Mitchell R.J. & Ashman T.-L. 2005. Pollen limitation of plant reproduction: pattern and process. Annual Review of Ecology, Evolution and Systematics 36(1): 467–497. https://doi.org/10.1146/annurev.ecolsys.36.102403.115320

Parra-Tabla V., Vargas C.F., Magaña-Rueda S. & Navarro J. 2000. Female and male pollination success of Oncidium ascendens Lindey (Orchidaceae) in two contrasting habitat patches: forest vs agricultural field. Biological Conservation 94(3): 335–340. https://doi.org/10.1016/S0006-3207(99)00187-1

Peakall R. & Beattie A.J. 1996. Ecological and genetic consequences of pollination by sexual deception in the orchid Caladenia tentactulata. Evolution 50(6): 2207–2220. https://doi.org/10.1111/j.1558-5646.1996.tb03611.x

Pérez-Decelis V.A., Gómez-Alonso C. & Ávila-Díaz I. 2013. Distribution patterns of Cuitlauzina pendula La Llave & Lex (Orchidaceae) over its phorophytes at the ‘Barranca de Cupatitzio’ National Park, in Uruapan, Michoacán, México. Lankesteriana 13(1–2): 145. https://doi.org/10.15517/lank.v0i0.11611

Quiroga D., Martínez M. & Larrea-Alcázar D.M. 2010. Pollination systems of five species of orchids growing under greenhouse conditions. Ecología en Bolivia 45(2): 131–137.

Rech A.R., Jorge L.R., Ollerton J. & Sazima M. 2018. Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree. Acta Botanica Brasilica 32(3): 462–472. https://doi.org/10.1590/0102-33062018abb0220

Rech A.R., Rosa Y.B.C.J. & Manente-Balestieri F.C.L. 2010. Aspects of the reproductive biology of Brassavola cebolleta Rchb.f. (Orchidaceae). Acta Scientiarum. Biological Sciences. Maringá 32(4): 335–341. https://doi.org/10.4025/actascibiolsci.v32i4.7148

SEMARNAT 2010. NORMA Oficial Mexicana NOM-059-SEMARNAT-201, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Secretaría del Medio Ambiente y Recursos Naturales, Mexico. Available from http://www.profepa.gob.mx/innovaportal/file/435/1/NOM_059_SEMARNAT_2010.pdf [accessed 13 Oct. 2020].

Soo O.G., Chung M.Y., Chung S.G. & Chung M.G. 2001. Contrasting breeding systems: Liparis Kumokiri and L. makinoana (Orchidaceae). Annales Botanici Fennici 38(4): 281–284. https://www.jstor.org/stable/23726703

Soto-Arenas M.A. & Solano-Gómez. A.R. 2007. Ficha técnica de Rhynchostele cervantesii. In: Soto-Arenas M.A. (ed.) Información actualizada sobre las especies de orquídeas del PROY-NOM-059-ECOL-2000. Instituto Chinoín & Herbario de la Asociación Mexicana de Orquideología, Mexico. Bases de datos SNIB-CONABIO. Proyecto No. W029. Available from http://www.conabio.gob.mx/conocimiento/ise/fichasnom/Rhynchostelecervantesii00.pdf [accessed 28 Sep. 2020].

Sun M. 1997. Genetic diversity in three colonizing orchids with contrasting mating systems. American Journal of Botany 84(2): 224–232. https://doi.org/10.2307/2446084

Sun H.-Q., Huang B.-Q., Yu X.-H., Tian C.-B., Peng Q.-X. & An D.-J. 2018. Pollen limitation, reproductive success and flowering frequency in single-flowered plants. Journal of Ecology 106(1): 19–30. https://doi.org/10.1111/1365-2745.12834

Téllez-Velasco M.A.A. 2011. Análisis del diagnóstico de la familia Orchidaceae en México. Universidad Autónoma de Chapingo, Mexico. Available from https://www.gob.mx/cms/uploads/attachment/file/225080/Analisis_del_diagnostico_de_la_familia_orchidaceae_en_mexico.pdf [accessed 28 Sep. 2020].

The Plant List 2013. The Plant List version 1.1. Available from http://www.theplantlist.org/ [accessed 3 Oct. 2020].

Torretta J.P., Gomiz N.E., Aliscioni S.S. & Bello M.E. 2011. Biología reproductiva de Gomesa bifolia (Orchidaceae, Cymbidieae, Oncidiinae). Darwiniana 49(1): 16–24. https://www.jstor.org/stable/23230231

Tremblay R.L., Ackerman J.D., Zimmerman J.K. & Calvo R.N. 2005. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biological Journal of the Linnean Society 84(1): 1–54. https://doi.org/10.1111/j.1095-8312.2004.00400.x

Tropicos 2019. Tropicos database. St Louis, Missouri Botanical Garden. Available from https://www.tropicos.org/ [accessed 27 Jun. 2019].

Vallius E. 2000. Position-dependent reproductive success of flowers in Dactylorhiza maculata (Orchidaceae). Functional Ecology 14(5): 573–579. https://doi.org/10.1046/j.1365-2435.2000.t01-1-00450.x

Vogler D.W. & Kalisz S. 2001. Sex among the flowers: the distribution of plant mating systems. Evolution 55(1): 202–204. https://doi.org/10.1111/j.0014-3820.2001.tb01285.x

Wong K.C. & Sun M. 1999. Reproductive biology and conservation genetics of Goodyera procera (Orchidaceae). American Journal of Botany 86(10): 1406–1413. https://doi.org/10.2307/2656923

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.