Niche conservatism in a plant with long invasion history: the case of the Peruvian peppertree (Schinus molle, Anacardiaceae) in Mexico
PDF

Supplementary Files

Supplementary File 1

Keywords

biogeographic equilibrium
biological invasion
climatic niche
distribution range
niche shift
niche conservatism
species distribution models

How to Cite

Ramírez-Albores, J., Bizama, G., Bustamante, R. and Badano, E. (2020) “Niche conservatism in a plant with long invasion history: the case of the Peruvian peppertree (Schinus molle, Anacardiaceae) in Mexico”, Plant Ecology and Evolution, 153(1), pp. 3-11. doi: 10.5091/plecevo.2020.1562.

Abstract

Background and aim – Invasive plants should only colonize habitats meeting the environmental conditions included in their native niches. However, if they invade habitats with novel environmental conditions, this can induce shifts in their niches. This may occur in plants with long invasion histories because they interacted with the environmental conditions of invaded regions over long periods of time. We focused on this issue and evaluated whether the niche of the oldest plant invader reported in Mexico, the Peruvian peppertree, is still conserved after almost 500 years of invasion history.
Methods – We compared climatic niches of the species between the native and invaded region. We later used species distribution models (SDM) to visualize the geographical expression of both niches in Mexico.
Results – The invasive niche of the Peruvian peppertree is fully nested within the native niche. Although this suggests that the niche is conserved, this also indicates that a large fraction of the native niche is empty in the invaded region. The SDM from the native region indicated that Mexico contains habitats meeting the conditions included in this empty fraction of the native niche and, thus, this invasion should continue expanding. Nevertheless, the SDM calibrated with data from the invaded region indicated that peppertrees have colonized all suitable habitats indicated by its invasive niche and, thus, their populations should no longer expand.
Conclusion – Our results suggests that the niche of the Peruvian peppertree is partially conserved in Mexico. This may have occurred because individuals introduced into Mexico constituted a small, nonrepresentative sample of the full niche of the species.

https://doi.org/10.5091/plecevo.2020.1562
PDF

References

Alexander J.M. (2016) Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant. Proceedings of the Royal Society B 280(1767): 20131446. https://doi.org/10.1098/rspb.2013.1446

Alexander J.M., Edwards P.J. (2010) Limits to the niche and range margins of alien species. Oikos 119(9): 1377–1386. https://doi.org/10.1111/j.1600-0706.2009.17977.x

Alzate-Ramírez J.A. (1831) Gacetas de Literatura de México, vol. 2. Reimpresas de la Oficina del Hospital de San Pedro, Puebla, México.

Beaumont L.J., Hughes L., Poulsen M. (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling 186(2): 251–270. https://doi.org/10.1016/j.ecolmodel.2005.01.030

Broennimann O., Fitzpatrick M.C., Pearman P.B., Petitpierre B., Pellissier L., Yoccoz N.G., Thuiller W., Fortin M.J., Randin C., Zimmermann N.E., Graham C.H., Guisan A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21(4): 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

Céréghino R., Santoul F., Compin A., Mastrorillo S. (2005) Using self-organizing maps to investigate spatial patterns of non-native species. Biological Conservation 125(4): 459–465. https://doi.org/10.1016/j.biocon.2005.04.018

Chun Y.J., Nason J.D., Moloney K.A. (2009) Comparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicaria L., Lythraceae). Molecular Ecology 18(14): 3020–3035. https://doi.org/10.1111/j.1365-294X.2009.04254.x

Dlugosch K.M., Parker I.M. (2008) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecology Letters 11(7): 701–709. https://doi.org/10.1111/j.1461-0248.2008.01181.x

Draper D, Marques I., Iriondo J.M. (2019) Species distribution models with field validation, a key approach for successful selection of receptor sites in conservation translocations. Global Ecology and Conservation 19: e00653. https://doi.org/10.1016/j.gecco.2019.e00653

Early R., Sax D.F. (2014) Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecast during invasions and climate change. Global Ecology and Biogeography 23(12):1356–1365. https://doi.org/10.1111/geb.12208

Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Elith J., Phillips S.J., Hastie T., Dudík M., Chee Y.E., Yates C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

ESRI (2011) ArcGis. Version 9. Available at https://www.esri.com/en-us [accessed 13 Jan. 2020].

Fick S.E., Hijmans R.J. (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. https://doi.org/10.1002/joc.5086

Fielding A.H., Bell J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24(1): 380–49. https://doi.org/10.1017/S0376892997000088

Gallagher R.V., Beaumont L.J., Hughes L., Leishman M.R. (2010) Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology 98(4): 790–799. https://doi.org/10.1111/j.1365-2745.2010.01677.x

Goncalves E., Herrera I., Duarte M., Bustamante R.O., Lampo M., Velásquez G., Sharma G.P., García-Rangel S. (2014) Global invasion of Lantana camara: has the climatic niche been conserved across continents? PLoS ONE 9(10): e111468. https://doi.org/10.1371/journal.pone.0111468

Google LLC (2018) Google Earth Pro. Version 7.3. Available at https://www.google.com/intl/en_uk/earth [accessed 13 Jan. 2020].

Iponga D.M., Milton S.J., Richardson D.M. (2009a) Soil type, microsite, and herbivory influence growth and survival of Schinus molle (Peruvian pepper tree) invading semi-arid African savanna. Biological Invasions 11(2): 159–169. https://doi.org/10.1007/s10530-008-9221-6

Iponga D.M., Milton S.J., Richardson D.M. (2009b) Reproductive potential and seedling establishment of the invasive alien tree Schinus molle (Anacardiaceae) in South Africa. Austral Ecology 34(6): 678–687. https://doi.org/10.1111/j.1442-9993.2009.01975.x

Iponga D.M., Milton S.J., Richardson D.M. (2010) Performance of seedlings of the invasive alien tree Schinus molle L. under indigenous and alien host trees in semi‐arid savanna. African Journal of Ecology 48(1): 155–158. https://doi.org/10.1111/j.1365-2028.2009.01094.x

Jaksic F., Castro-Morales S.A. (2013) Invasiones biológicas en Chile: causas globales e impactos locales. Pontificia Universidad Católica de Chile, Santiago de Chile.

Jimenez, M.C. (1875) El árbol del Perú (Schinus molle). La Naturaleza 2: 217–222.

Kolanowska M., Konowalik K. (2014) Niche conservatism and future changes in the potential area coverage of Arundina graminifolia, an invasive orchid species from southeast Asia. Biotropica 46(2): 157–165. https://doi.org/10.1111/btp.12089

Kramer F.L. (1957) The pepper tree, Schinus molle L. Economic Botany 11(4): 322–326. https://doi.org/10.1007/BF02903811

Manzoor S.A, Griffiths G., Lukac M. (2018) Species distribution model transferability and model grain size - finer may not always be better. Scientific Reports 8: 7168. https://doi.org/10.1038/s41598-018-25437-1

Mas J.F., Filho B.S., Pontius R.G., Farfán-Gutiérrez, Rodrigues H. (2013) A suite of tools for roc analysis of spatial models. ISPRS International Journal of Geo-Information 2(3): 869–887. https://doi.org/10.3390/ijgi2030869

Osorio-Olvera L., Barve V., Barve N., Soberón J., Falconi M. (2018) Ntbox: From getting biodiversity data to evaluating species distribution models in a friendly GUI environment. R package version 0.2.5.4. Available at https://github.com/luismurao/ntbox [accessed 4 Jul. 2019].

Peña-Gómez F.T., Guerrero P., Bizama G., Duarte M., Bustamante R.O. (2014) Climatic niche conservatism and biogeographical non-equilibrium in Eschscholzia californica (Papaveraceae), an invasive plant in the Chilean Mediterranean region. PLoS ONE 9(8): e105025. https://doi.org/10.1371/journal.pone.0105025

Peterson A.T., Vieglais D.A. (2001) Predicting species invasions using ecological niche modelling: new approaches from bioinformatics attack a pressing problem. BioScience 51(5): 363–371. https://doi.org/10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2

Peterson A.T., Papes M., Kluza D.A. (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Science 51(6): 863–868. https://doi.org/10.1614/P2002-081

Peterson A.T., Papeş M., Soberón J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213(1): 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

Petitpierre B., Kueffer C., Broennimann O., Randin C., Daehler C., Guisan A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335(6074): 1344–1348. https://doi.org/10.1126/science.1215933

Phillips S.J., Anderson R.P., Schapire R.E. (2006) Maximum entropy modelling of species geographic distributions. Ecological Modelling 190(3–4): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Prentis J.P., Sigg D.P., Raghu S., Dhileepan K., Pavasovic A., Lowe A.J. (2009) Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Diversity and Distributions 15(5): 822–830. https://doi.org/10.1111/j.1472-4642.2009.00592.x

Ramírez-Albores J.E., Badano E.I. (2013) Perspectiva histórica, sociocultural y ecológica de una invasión biológica: el caso del Pirúl (Schinus molle L., Anacardiaceae) en México. Boletín de la Red Latinoamericana para el Estudio de Especies Invasoras 3(1): 4–15.

Ramírez-Albores J.E., Bustamante R.O., Badano E.I. (2016) Improved predictions of the geographic distribution of the invasive plants using climatic niche models. PLoS ONE 11(5): e0156029. https://doi.org/10.1371/journal.pone.0156029

Rodríguez-Laredo D.M. (2011) La gestión del verde urbano como un criterio de mitigación y adaptación al cambio climático. Revista Institucional de Ciencias, Tecnología e Innovación Investig@ UMSA 2(2): 55–70.

Richardson D.M., Pyšek P., Rejmánek M., Barbour M.G., Panetta F.D., West C.J. (2000) Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6(2): 93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x

Richardson D.M., Iponga D.M., Roura-Pascual N., Krug R.M., Milton S.J., Hughes G.O., Thuiller W. (2010) Accommodating scenarios of climate change and management in modelling the distribution of the invasive tree Schinus molle in South Africa. Ecography 33(6): 1049–1061. https: //doi.org/10.1111/j.1600-0587.2010.06350.x

Sax D.F., Early R., Bellemare J. (2013) Niche syndromes, species extinction risks, and management under climate change. Trends in Ecology & Evolution 28(9): 517–523. https://doi.org/10.1016/j.tree.2013.05.010

Schoener T.W. (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51(3): 408–418. https://doi.org/10.2307/1935376

Sexton J.P., McIntyre P.J., Angert A.L., Rice K.J. (2009) Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics 40: 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317

The R Foundation (2018) R: A language and environment for statistical computing. Version 3.4. Available at https://www.r-project.org [accessed 13 Jan. 2020].

Václavík T., Meentemeyer R.K. (2011) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions 18(1): 73–83. https://doi.org/10.1111/j.1472-4642.2011.00854.x

Wan J.Z., Wang C.J., Yu F.H. (2019) Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia 74(7): 757–766. https://doi.org/10.2478/s11756-019-00215-0

Ward S. (2006) Genetic analysis of invasive plant populations at different spatial scales. Biological Invasions 8(3): 541–552. https://doi.org/10.1007/s10530-005-6443-8

Warren D.L., Glor R.E., Turelli M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62(11): 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

Wiens J.J., Graham C.H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431

Wiens J.J., Ackerly D.D., Allen A.P., Anacker B.L, Buckley L.B., Cornell H.V., Damschen E.I., Davies T.J., Grytnes J.A., Harrison S.P., Hawkins B.A., Holt R.D., McCain C.M., Stephens P.R. (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13(10): 1310–01324. https://doi.org/10.1111/j.1461-0248.2010.01515.x

Wisz M.S., Hijmans R.J., Li J., Peterson A.T., Graham C.H., Guisan A. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions 14(5): 763–773. https ://doi.org/10.1111/j.1472-4642.2008.00482.x

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.