Diversity of epiphyte ferns along an elevational gradient in El Triunfo Biosphere Reserve, southern Mexico
PDF

Supplementary Files

Supplementary File 1

Keywords

Alpha and Beta diversity
elevational pattern
fern richness
partitioning diversity
Sierra Madre de Chiapas

How to Cite

Jiménez-López, D., Martínez-Camilo, R., Martínez-Meléndez, N. and Kessler, M. (2020) “Diversity of epiphyte ferns along an elevational gradient in El Triunfo Biosphere Reserve, southern Mexico”, Plant Ecology and Evolution, 153(1), pp. 12-21. doi: 10.5091/plecevo.2020.1573.

Abstract

Background and aims – In the tropics, some studies have found that the richness of epiphytic ferns present a peak at mountain mid-elevations. However, it is not well understood how transitions from tropical to subtropical conditions affect this peak, and even less is known about beta diversity of epiphytic ferns. Thus, the objective is to understand the effect of climatic gradients on the variation of local richness of ferns and beta diversity patterns along an elevational gradient in a mountain system in southern Mexico.
Methods – We sampled 32 trees, each in four elevational bands (100–2200 m). Alpha diversity patterns were analysed using linear regression models. We used the Morisita index to quantify species turnover between bands. An additive partitioning approach was used to analyse the degree to which individual trees, plots, and bands contributed to total species richness. We evaluated the influence of climatic variables on species composition via linear regression models.
Key results – A total of 30 species in five families were recorded. Each family contributed in different magnitude to the elevational richness pattern, with Polypodiaceae dominating due to its richness and presence along the entire transect. Alpha diversity at the three scales (αtree, αplot, αband) increased with elevation and rainfall, and with decreasing temperature. Species turnover was high along the gradient, but was scale-dependent, with βtransect (65–75%) and βband (14%) with the greatest contributing to total diversity. Although the contribution of the individual trees was lower, it increased with elevation.
Conclusions – We emphasize the importance of including different scale levels in analyses of diversity along elevational gradients. In the region, cloud forest on the mountain peaks harbours the highest diversity of epiphytic fern communities. Due to a limited extent of this mountain range, the epiphyte ferns are susceptible to the effects of climate change.

https://doi.org/10.5091/plecevo.2020.1573
PDF

References

Acebey A.R., Krömer T., Kessler M. (2017) Species richness and vertical distribution of ferns and lycophytes along an elevational gradient in Mexico. Flora 235: 83–91. https://doi.org/10.1016/j.flora.2017.08.003

Bach K., Kessler M., Gradstein S.R. (2007) A simulation approach to determine statistical significance of species turnover peaks in a species-rich tropical cloud forest. Diversity and Distributions 13(6): 863–870. https://doi.org/10.1111/j.1472-4642.2007.00357.x

Benzing D.H. (1990) Vascular epiphytes. General biology and related biota. New York, Cambridge University Press.

Bhattarai K.R., Vetaas O.R., Grytnes J.A. (2004) Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography 31(3): 389–400. https://doi.org/10.1046/j.0305-0270.2003.01013.x

Breedlove D.E. (1981) Flora of Chiapas, Part I: Introduction of the flora of Chiapas. San Francisco, The California Academy of Sciences.

Cardelús C., Mack M.C. (2010) The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecology 207(1): 25–37. https://doi.org/10.1007/s11258-009-9651-y

Cardelús C.L., Colwell R.K., Watkins J.E. (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology 94(1): 144–156. https://doi.org/10.1111/j.1365-2745.2005.01052.x

Carvajal-Hernández C.I., Krömer T. (2015) Riqueza y distribución de helechos y licófitos en el gradiente altitudinal del Cofre de Perote, centro de Veracruz, México. Botanical Science 93(3): 601–614. https://doi.org/10.17129/botsci.165

Carvajal-Hernández C.I., Krömer T., López-Acosta J.C., Gómez-Díaz J.A., Kessler M. (2017) Conservation value of disturbed and secondary forests for ferns and lycophytes along an elevational gradient in Mexico. Applied Vegetation Science 20(4): 662–672. https://doi.org/10.1111/avsc.12318

Chao A., Jost L., Chiang S.C., Jiang Y.H., Chazdon R.L. (2008) A two-stage probabilistic approach to multiple-community similarity indices. Biometrics 64(4): 1178–1186. https://doi.org/10.1111/j.1541-0420.2008.01010.x

Chao A., Ma K.H., Hsieh T.C., Chiu C.H. (2016) SpadeR (species-richness prediction and diversity estimation in R): an R package in CRAN. Version 0.1.1. Available at https://cran.r-project.org/web/packages/SpadeR/SpadeR.pdf [accessed 2 Nov. 2018].

Cortina-Villar S., Plascencia-Vargas H., Vaca R., Schroth G., Zepeda Y., Soto-Pinto L., Nahed-Toral J. (2012) Resolving the conflict between ecosystem protection and land use in protected areas of the Sierra Madre de Chiapas, Mexico. Environmental Management 49(3): 649–662. https://doi.org/10.1007/s00267-011-9799-9

Crist T.O., Veech J.A., Gering J.C., Summerville K.S. (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist 162(6): 734–743. https://doi.org/10.1086/378901

Dubuisson J.Y., Hennequin S., Rakotondrainibe F., Schneider H. (2003) Ecological diversity and adaptive tendencies in the tropical fern Trichomanes L. (Hymenophyllaceae) with special reference to climbing and epiphytic habits. Botanical Journal of the Linnean Society 142(1): 41–63. https://doi.org/10.1046/j.1095-8339.2003.00165.x

Escalante-Sandoval C., Amores-Rovelo L. (2014) Análisis de tendencia de las variables hidroclimáticas de la Costa de Chiapas. Revista Mexicana de Ciencias Agrícolas 5(1): 61–75.

Flores-Palacios A., García-Franco J.G. (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. Journal of Biogeography 33(2): 323–330. https://doi.org/10.1111/j.1365-2699.2005.01382.x

Foster P. (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73–106. https://doi.org/10.1016/S0012-8252(01)00056-3

Galindo-Jaimes L. (2008) Diversificación y restauración de paisajes transformados en comunidades de la Reserva de la Biósfera El Triunfo, Chiapas, México. Technical report, San Cristóbal de Las Casas, Fondo de Conservación El Triunfo-BIOCORES.

GBIF (2019) Serpocaulon triseriale (Sw.) A.R.Sm. in Species 2000 & ITIS Catalogue of Life: 2019, Catalogue of Life. Available at https://www.gbif.org/species/153317676 [accessed 2 Aug. 2019].

Gentry A.H., Dodson C.H. (1987) Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74(2): 205–233. https://doi.org/10.2307/2399395

González-Espinosa M., Meave J.A., Ramírez-Marcial N., Toledo-Aceves T., Lorea-Hernández F.G., Ibarra-Manríquez G. (2012) Los bosques de niebla de México: conservación y restauración de su componente arbóreo. Ecosistemas 21(1-2): 36–54.

Graham A. (2010) Late Cretaceous and Cenozoic history of Latin American vegetation and terrestrial environments. Monographs in Systematic Botany from the Missouri Botanical Garden 113: 1–617.

Hernández-Rojas R., Kessler M., Krömer T., Carvajal-Hernández C., Weigand A., Kluge J. (2018) Richness patterns of ferns along an elevational gradient in the Sierra de Juárez, Oaxaca, Mexico: a comparison with Central and South America. American Fern Journal 108(3): 76–94. https://doi.org/10.1640/0002-8444-108.3.76

Jones M.M., Tuomisto H., Borcard D., Legendre P., Clark D.B., Olivas P.C. (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data qualit. Oecologia 155(3): 593–604. https://doi.org/10.1007/s00442-007-0923-8

Jones M.M., Szyska B., Kessler M. (2011) Microhabitat partitioning promotes plant diversity in a mid-elevation tropical montane forest. Global Ecology and Biogeography 20(4): 558–569. https://doi.org/10.1111/j.1466-8238.2010.00627.x

Jost L. (2007) Partitioning diversity into independent alpha and beta components. Ecology 88(10): 2427–2439. https://doi.org/10.1890/06-1736.1

Karger D.N., Kluge J., Krömer T., Hemp A., Lehnert M., Kessler M. (2011) The effect of area on local and regional elevational patterns of species richness. Journal of Biogeography 38(6): 1177–1185. https://doi.org/10.1111/j.1365-2699.2010.02468.x

Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W., Zimmermann N., Linder H.P., Kessler M. (2017) Data descriptor: Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4: 170122. https://doi.org/10.1038/sdata.2017.122

Kessler M. (2000a) Elevation gradients in species richness endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149(2): 181–193. https://doi.org/10.1023/A:1026500710274

Kessler M. (2000b) Altitudinal zonation of Andean cryptogam communities. Journal of Biogeography 27(2): 275–282. https://doi.org/10.1046/j.1365-2699.2000.00399.x

Kessler M. (2001) Pteridophyte species richness in Andean forest in Bolivia. Biodiversity and Conservation 10(9): 1473–1495. https://doi.org/10.1023/A:1011811224595

Kessler M., Siorak Y. (2007) Desiccation and rehydration experiments on leaves of 43 pteridophyte species. American Fern Journal 97(4): 175–185. https://doi.org/10.1640/0002-8444(2007)97[175:DAREOL]2.0.CO;2

Kessler M., Kluge J., Hemp A., Ohlemüller R. (2011) A global comparative analysis of elevational species richness patterns of ferns. Global Ecology and Biogeography 20(6): 868–880. https://doi.org/10.1111/j.1466-8238.2011.00653.x

Kluge J., Kessler M., Dunn R.R. (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for Pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography 15(4): 358–371. https://doi.org/10.1111/j.1466-822X.2006.00223.x

Koleff P., Soberón J., Arita H.T., Dávila P., Flores-Villela O., Golubov J., Halfter G., Lira-Noriega A., Moreno C.E., Moreno E., Munguía M., Munguía M., Navarro-Sigüenza A.G., Téllez O., Ochoa-Ochoa L., Townsend-Peterson A., Rodríguez P. (2008) Patrones de diversidad espacial en grupos selectos de especies. In: CONABIO. Capital natural de México vol. 1: Conocimiento actual de la biodiversidad: 323–364. Mexico City, Comisión Nacional para el Uso y Conocimiento de la Biodiversidad.

Köster N., Friedrich K., Nieder J., Barthlott W. (2009) Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conservation Biology 23(4): 911–919. https://doi.org/10.1111/j.1523-1739.2008.01164.x

Kreft H., Jetz W., Mutke J., Barthlott W. (2010) Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33(2): 408–419. https://doi.org/10.1111/j.1600-0587.2010.06434.x

Krömer T., Kessler M., Gradstein S.R., Acebey A. (2005) Diversity patterns of vascular epiphytes along an elevation gradient in the Andes. Journal of Biogeography 32(10): 1799–1809. https://doi.org/10.1111/j.1365-2699.2005.01318.x

Krömer T., Acebey A., Klune J., Kessler M. (2013) Effects of altitude and climate in determining elevational plants species richness patterns: a case study from Los Tuxtlas, Mexico. Flora 208(3): 197–210. https://doi.org/10.1016/j.flora.2013.03.003

Küper W., Kreft H., Nieder J., Köster N., Barthlott W. (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography 31(9): 1477–1487. https://doi.org/10.1111/j.1365-2699.2004.01093.x

Lawton R.O., Nair U.S., Pielke R.A., Welch R.M. (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294(5542): 584–587. https://doi.org/10.1126/science.1062459

Lehtonen S., Jones M.M., Zuquim G., Prado J., Tuomisto H. (2015) Phylogenetic relatedness within Neotropical fern communities increases with soil fertility. Global Ecology and Biogeography 24(6): 695–705. https://doi.org/10.1111/geb.12294

Lehtonen S., Silvestro D., Karger D.N., Scotese C., Tuomisto H., Kessler M., Peña C., Wahlberg N., Antonelli A. (2017) Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Scientific Reports 7(1): 4831. https://doi.org/10.1038/s41598-017-05263-7

Magurran A.E. (2004) Measuring biological diversity. Oxford, Blackwell Publishing.

Martínez-Camilo R., Pérez-Farrera M.A., Martínez-Meléndez N. (2012) Listado de plantas endémicas y en riesgo de la Reserva de la Biosfera El Triunfo, Chiapas, México. Botanical Sciences 90(3): 263–285. https://doi.org/10.17129/botsci.390

Martínez-Camilo R., González-Espinosa M., Ramírez-Marcial N., Cayuela L., Pérez-Farrera M.A. (2018) Tropical tree species diversity in a mountain system in southern Mexico: local and regional patterns and determinant factors. Biotropica 50(3): 499–509. https://doi.org/10.1111/btp.12535

Martínez-Meléndez N., Pérez-Farrera M.A., Martínez-Camilo R. (2009) The vascular epiphyte flora of El Triunfo Biosphere Reserve, Chiapas, México. Rhodora 111(948): 503–535. https://doi.org/10.3119/08-20.1

McCain C.M. (2005) Elevational gradients in diversity of small mammals. Ecology 86(2): 366–372. https://doi.org/10.1890/03-3147

Melo A.S., Rangel T.F.L., Diniz-Filho J.A.F. (2009) Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32(2): 226–236. https://doi.org/10.1111/j.1600-0587.2008.05502.x

Mickel J.T., Smith A.R. (2004) The Pteridophytes of Mexico. Memoirs of The New York Botanical Garden 88: 1–1054.

Nair U.S., Lawton R.O., Welch R.M., Pielke R.A. (2003) Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. Journal of Geophysical Research: Atmospheres 108(7): 4206. https://doi.org/10.1029/2001JD001135

Pérez-Farrera M.A. (2004) Flora y vegetación de la reserva de la biósfera El Triunfo: diversidad, riqueza y endemismo. In: Pérez-Farrera M.A., Martínez-Meléndez N., Hernández-Yáñez A., Arreola-Muñoz A.V. (eds) La Reserva de la Biósfera El Triunfo, tras una década de conservación: 77–100. Tuxtla Gutierrez, Universidad de Ciencias y Artes de Chiapas.

Perry G.R. (1978) A method of access into the crowns of emergent and canopy trees. Biotropica 10: 155–157. https://doi.org/10.2307/2388019

Peters M.K., Hemp A., Appelhans T., Behler C., Classen A., Detsch F., Ensslin A., Ferger S.W., Frederiksen S.B., Gebert F., Haas M., Helbig-Bonitz M., Hemp C., Kindeketa W.J., Mwangomo E., Ngereza C., Otte I.,Röder J., Rutten G., Schellenberger-Costa D., Tardanico J., Zancolli G., Deckert J., Eardley C.D, Peters R.S., Rödel M., Schleuning M., Ssymank A., Kakengi V., Zhang J., Böhning-Gaese K., Brandl R., Kalko E.K.V., Kleyer M., Nauss T., Tschapka M., Fischer M., Steffan-Dewenter I. (2016) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications 7: 13736. https://doi.org/10.1038/ncomms13736

Pounds J.A., Fogden M.P., Campbell J.H. (1999) Biological response to climate change on a tropical mountain. Nature 398(6728): 611–615. https://doi.org/10.1038/19297

PPGI – Pteridophyte Phylogeny Group I (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematic and Evolution 54(6): 563–603. https://doi.org/10.1111/jse.12229

Proctor M.C.F. (2012) Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad, Venezuela and New Zealand: poikilohydry in a light-limited but low evaporation ecological niche. Annals of Botany 109(5): 1019–1026. https://doi.org/10.1093/aob/mcs012

R Core Team (2018) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at https://www.r-project.org [accessed 2 Nov. 2018].

Rahbek C. (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters 8(2): 224–239. https://doi.org/10.1111/j.1461-0248.2004.00701.x

Rzedowski J. (1978) Vegetación de México. Mexico City, Limusa.

Salazar L., Homeier J., Kessler M., Abrahamczyk S., Lehnert M., Krömer T., Kluge J. (2013) Diversity patterns of ferns along elevational gradients in Andean tropical forest. Plant Ecology and Diversity 8(1): 13–24. https://doi.org/10.1080/17550874.2013.843036

Sánchez-González A., López-Mata L. (2005) Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Diversity and Distribution 11(6): 567–575. https://doi.org/10.1111/j.1366-9516.2005.00186.x

Sanford W.W. (1968) Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. Journal of Ecology 56: 697–705. https://doi.org/10.2307/2258101

Schwerbrock R., Leuschner C. (2017) Foliar water uptake, a widespread phenomenon in temperate woodland ferns? Plant Ecology 218(5): 555–563. https://doi.org/10.1007/s11258-017-0711-4

SEMARNAT (2018) Norma Oficial Mexicana NOM-059-SEMARNAT-2018, Protección ambiental – Especies nativas de México de flora y fauna silvestres – Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio – Lista de especies en riesgo. Diario Oficial de la Federación. Available at https://www.diariooficial.gob.mx/nota_detalle.php?codigo=5534594&fecha=13/08/2018> [accessed 1 Aug. 2019].

Sundue M.A., Testo W.L., Ranker T.A. (2015) Morphological innovation, ecological opportunity, and the radiation of a major vascular epiphyte lineage. Evolution 69(9): 2482–2495. https://doi.org/10.1111/evo.12749

Tuomisto H., Zuquim G., Cárdenas G. (2014) Species richness and diversity along edaphic and climatic gradients in Amazonia. Ecography 37(11): 1034–1046. https://doi.org/10.1111/ecog.00770

Toledo-Aceves T., Meave J.A., González-Espinosa M., Ramírez-Marcial N. (2011) Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. Journal of Environmental Management 92(3): 974–981. https://doi.org/10.1016/j.jenvman.2010.11.007

Veech J.A., Summerville K.S., Crist T.O., Gering J.C. (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99(1): 3–9. https://doi.org/10.1034/j.1600-0706.2002.990101.x

Vellend M. (2001) Do commonly used indices of β–diversity measure species turnover? Journal of Vegetation Science 12(4): 545–552. https://doi.org/10.2307/3237006

Vetaas O.R., Paudel K.P., Christensen M. (2019) Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. Journal of Biogeography 46(8): 1652–1663. https://doi.org/10.1111/jbi.13564

Wang G., Zhou G., Yang L., Li Z. (2003) Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology 165(2): 169–181. https://doi.org/10.1023/A:1022236115186

Watkins Jr J.E., Cardelús C., Colwell R.K., Moran R.C. (2006) Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Fern Journal 93(1): 73–83. https://doi.org/10.3732/ajb.93.1.73

Whittaker R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30(3): 279–338. https://doi.org/10.2307/1943563

Wolf J.H.D., Flamenco A. (2003) Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography 30(11): 1689–1707. https://doi.org/10.1046/j.1365-2699.2003.00902.x

Zotz G. (2013) The systematic distribution of vascular epiphytes – a critical update. Botanical Journal of the Linnean Society 177(3): 453–481. https://doi.org/10.1111/boj.12010

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.