Unexplored diversity of microscopic myxomycetes: evidence from environmental DNA
Cover Plant Ecology and Evolution volume 152 number3

Supplementary Files

Supplementary File 1
Supplementary File 2


18S rDNA
hidden diversity
slime moulds

How to Cite

Shchepin, O., Schnittler, M., Dagamac, N., Leontyev, D. and Novozhilov, Y. (2019) “Unexplored diversity of microscopic myxomycetes: evidence from environmental DNA”, Plant Ecology and Evolution, 152(3), pp. 499-506. doi: 10.5091/plecevo.2019.1621.


Background and aims – Recent studies showed the position of two slime mould species with microscopic sporocarps, Echinosteliopsis oligospora and Echinostelium bisporum, within the class Myxomycetes. These minute species are seldom seen in studies based on detection of sporocarps and can easily be confused with protosteloid amoebozoans.
Methods – We searched all published ePCR data sets that targeted myxomycete 18S rDNA for the presence of environmental sequences similar to E. oligospora and Echinosteliales in traditional circumscription, and performed phylogenetic analyses that included short environmental sequences and full-length 18S rDNA sequences representing all the major groups of myxomycetes.
Key results – We report 19 unique sequences which are closely related to E. bisporum or E. oligospora based on sequence similarity (73.1–95.2% similarity) and which form well-supported monophyletic clades with these species in phylogenetic analyses. They may represent new species that are not yet described. Our phylogeny based on full-length 18S rDNA sequences further confirms the position of E. bisporum and E. oligospora within myxomycetes and the paraphyly of the order Echinosteliales in its traditional circumscription.
Conclusions – Our results show that ePCR-based studies can reveal myxomycete taxa that often escape detection by traditional approaches, including potentially new species, and thus provide valuable new data on diversity and ecology of myxomycetes. As such, strategies for studying myxomycetes biodiversity should be revised, focusing also on molecular detection techniques in addition to the sporocarp-based ones.



Aguilar M., Fiore-Donno A.M., Lado C., Cavalier-Smith T. (2013) Using environmental niche models to test the ‘everything is everywhere’ hypothesis for Badhamia. The ISME Journal 8: 737–745. https://doi.org/10.1038/ismej.2013.183

Alexopoulos C. (1960) Gross morphology of the plasmodium and its significance in the relationships among the myxomycetes. Mycologia 52(1): 1–20. https://doi.org/10.2307/3756246

Borg Dahl M., Brejnrod A.D., Unterseher M., Hoppe T., Feng Y., Novozhilov Y.K., Sørensen S.J., Schnittler M. (2018a) Genetic barcoding of dark-spored myxomycetes (Amoebozoa) – identification, evaluation and application of a sequence similarity threshold for species differentiation in NGS studies. Molecular Ecology Resources 18(2): 306–318. https://doi.org/10.1111/1755-0998.12725

Borg Dahl M., Shchepin O.N., Schunk C., Menzel A., Novozhilov Y.K., Schnittler M. (2018b) A four year survey reveals a coherent pattern between distribution of fruit bodies and soil amoebae populations for nivicolous myxomycetes. Scientific Reports 8(1): 11662. https://doi.org/10.1038/s41598-018-30131-3

Clissmann F., Fiore-Donno A.M., Hoppe B., Krüger D., Kahl T., Unterseher M., Schnittler M. (2015) First insight into dead wood protistean diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime moulds) in decaying beech logs. FEMS Microbiology Ecology 91(6): fiv50. https://doi.org/10.1093/femsec/fiv050

Dagamac N.H.A., Rojas C., Novozhilov Y.K., Moreno G.H., Schlueter R., Schnittler M. (2017) Speciation in progress? A phylogeographic study among populations of Hemitrichia serpula (Myxomycetes). PLoS ONE 12(4): e0174825. https://doi.org/10.1371/journal.pone.0174825

Feng Y., Schnittler M. (2015) Sex or no sex? Independent marker genes and group I introns reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). Organisms Diversity & Evolution 15(4): 631–650. https://doi.org/10.1007/s13127-015-0230-x

Feng Y., Klahr A., Janik P., Ronikier A., Hoppe T., Novozhilov Y.K., Schnittler M. (2016) What an intron may tell: several sexual biospecies coexist in Meriderma spp. (Myxomycetes). Protist 167(3): 234–253. https://doi.org/10.1016/j.protis.2016.03.003

Fiore-Donno A.M., Haskins E.F., Pawlowski J., Cavalier-Smith T. (2009) Semimorula liquescens is a modified echinostelid myxomycete (Mycetozoa). Mycologia 101(6): 773–776. https://doi.org/10.3852/08-075

Fiore-Donno A.M., Weinert J., Wubet T., Bonkowski M. (2016) Metacommunity analysis of amoeboid protists in grassland soils. Scientific Reports 6: 19068. https://doi.org/10.1038/srep19068

Fiore-Donno A.M., Tice A.K., Brown M.W. (2018) A non-flagellated member of the Myxogastria and expansion of the Echinosteliida. Journal of Eukaryotic Microbiology https://doi.org/10.1111/jeu.12694

GBIF.org (2019a) GBIF Occurrence Download. https://doi.org/10.15468/dl.daphve [accessed 25 Mar. 2019].

GBIF.org (2019b) GBIF Occurrence Download. https://doi.org/10.15468/dl.rsskfw [accessed 25 Mar. 2019].

Haskins E.F., Clark J. (2016) A guide to the biology and taxonomy of the Echinosteliales. Mycosphere 7(4): 473–491. https://doi.org/10.5943/mycosphere/7/4/7

Hoppe T., Kutschera U. (2015) Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds. Plant Signaling & Behavior 10(9): e1074368. https://doi.org/10.1080/15592324.2015.1074368

Huelsenbeck J.P., Ronquist F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285

Kamono A., Kojima H., Matsumoto J., Kawamura K., Fukui M. (2009a) Airborne myxomycete spores: detection using molecular techniques. Naturwissenschaften 96(1): 147–151. https://doi.org/10.1007/s00114-008-0454-0

Kamono A., Matsumoto J., Kojima H., Fukui M. (2009b) Characterization of myxomycete communities in soil by reverse transcription polymerase chain reaction (RT-PCR)-based method. Soil Biology and Biochemistry 41(6): 1324–1330. https://doi.org/10.1016/j.soilbio.2009.04.001

Kamono A., Meyer M., Cavalier-Smith T., Fukui M., Fiore-Donno A.M. (2013) Exploring slime mould diversity in high-altitude forests and grasslands by environmental RNA analysis. FEMS Microbiology Ecology 84(1): 98–109. https://doi.org/10.1111/1574-6941.12042

Kang S., Tice A.K., Spiegel F.W., Silberman J.D., Pánek T., Čepička I., Kostka M., Kosakyan A., Alcântara D.M., Roger A.J., Shadwick L.L., Smirnov A., KudryavstevA., Lahr D.J.G., Brown M.W. (2017) Between a pod and a hard test: The deep evolution of amoebae. Molecular Biology and Evolution 34(9): 2258–2270. https://doi.org/10.1093/molbev/msx162

Katoh K., Kuma K., Toh H., Miyata T. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33(2): 511–518. https://doi.org/10.1093/nar/gki198

Katoh K., Rozewicki J., Yamada K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics: bbx108. https://doi.org/10.1093/bib/bbx108

Ko T.W., Stephenson S.L., Jeewon R., Lumyong S., Hyde K.D. (2009) Molecular diversity of myxomycetes associated with decaying wood and forest floor leaf litter. Mycologia 101(5): 592–598. https://doi.org/10.3852/08-158

Lado C. (2005–2019) An on-line nomenclatural information system of Eumycetozoa. Available at http://eumycetozoa.com/ [accessed 2 Apr. 2019].

Lado C., Eliasson U. (2017) Taxonomy and systematics: current knowledge and approaches on the taxonomic treatment of Myxomycetes. In: Stephenson S.L., Rojas C. (eds) Myxomycetes. Biology, systematics, biogeography and ecology: 205–251. United Kingdom, Elsevier, Academic Press. https://doi.org/10.1016/B978-0-12-805089-7.00007-X

Leontyev D.V., Schnittler M., Stephenson S.L., Shadwick L.L., Novozhilov Y.K., Shchepin O.N. (2019) Towards a phylogenetic classification of the Myxomycetes. Phytotaxa 399(3): 209–238. https://doi.org/10.11646/phytotaxa.399.3.5

Minh B.Q., Nguyen M.A.T., Von Haeseler A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30(5): 1188–1195. https://doi.org/10.1093/molbev/mst024

Novozhilov Y.K., Okun M.V., Erastova D.A., Shchepin O.N., Zemlyanskaya I.V., García-Carvajal E., Schnittler M. (2013) Description, culture and phylogenetic position of a new xerotolerant species of Physarum. Mycologia 105(6): 1535–1546. https://doi.org/10.3852/12-284

Novozhilov Y.K., Rollins A.W., Schnittler M. (2017) Ecology and distribution of Myxomycetes. In: Stephenson S.L., Rojas C. (eds) Myxomycetes. Biology, systematics, biogeography and ecology: 83–105. United Kingdom, Elsevier, Academic Press. https://doi.org/10.1016/B978-0-12-805089-7.00008-1

Olive L.S., Stoianovitch C. (1966) A new two-spored species of Cavostelium (Protostelida). Mycologia 58(3): 440–451. https://doi.org/10.2307/3756918

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584. https://doi.org/10.7717/peerj.2584

Schnittler M., Novozhilov Y.K., Shadwick J.D.L., Spiegel F.W., García-Carvajal E., König P. (2015) What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman. Mycosphere 6(3): 356–384. https://doi.org/10.5943/mycosphere/6/3/11

Shchepin O.N., Novozhilov Y.K., Schnittler M. (2016) Disentangling the taxonomic structure of the Lepidoderma chailletii-carestianum species complex (Myxogastria, Amoebozoa): genetic and morphological aspects. Protistology 10(4): 117–129. https://doi.org/10.21685/1680-0826-2016-10-4-1

Shchepin O.N., Schnittler M, Erastova D.A., Prikhodko I.S., Borg Dahl M., Azarov D.V., Chernyaeva E.N., Novozhilov Y.K. (2019) Community of dark-spored myxomycetes in ground litter and soil of taiga forest (Nizhne-Svirskiy Reserve, Russia) revealed by DNA metabarcoding. Fungal Ecology 39: 80–93. https://doi.org/10.1016/j.funeco.2018.11.006

Stephenson S.L., Schnittler M., Novozhilov Y.K. (2008) Myxomycete diversity and distribution from the fossil record to the present. Biodiversity and Conservation 17(2): 285–301. https://doi.org/10.1007/s10531-007-9252-9

Suutari M., Majaneva M., Fewer D.P., Voirin B., Aiello A., Friedl T., Chiarello A.G., Blomster J. (2010) Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae). BMC Evolutionary Biology 10: 86. https://doi.org/10.1186/1471-2148-10-86

Talavera G., Castresana J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56(4): 564–577. https://doi.org/10.1080/10635150701472164

Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232–W235. https://doi.org/10.1093/nar/gkw256

Vlasenko A.V., Filippova N.V., Vlasenko V.A. (2018) Echinostelium novozhilovii (Echinosteliaceae, Myxomycetes), a new species from Northern Asia. Phytotaxa 367(1): 91–96. https://doi.org/10.11646/phytotaxa.367.1.11

Whitney K.D., Bennett W.E., Olive L.S. (1982) Observations on Echinostelium bisporum. Mycologia 74(4): 677–680. https://doi.org/10.2307/3792760

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.