Ecological niche overlap among species of the genus Zaluzania (Asteraceae) from the dry regions of Mexico

Supplementary Files

Supplementary file 1
Supplementary file 2


ecological niche
niche conservatism
niche overlap

How to Cite

Suárez-Mota, M. and Villaseñor, J. (2020) “Ecological niche overlap among species of the genus Zaluzania (Asteraceae) from the dry regions of Mexico”, Plant Ecology and Evolution, 153(3), pp. 337-347. doi: 10.5091/plecevo.2020.1663.


Background and aims – The hypothesis of ecological niche conservatism postulates that closely related species share ecologically similar environments; that is, they tend to maintain the characteristics of their fundamental niche over time. The objective of this study is to evaluate the similarity and equivalence of the ecological niches among species of the genus Zaluzania (Asteraceae), characteristic of the Mexican arid and semi-arid regions, to infer their potential niche conservatism.
Methods – Based on critically reviewed herbarium occurrence data, potential distribution models for eight species of Zaluzania were generated using the Maxent algorithm. The overlap between potential distribution areas was then evaluated using equivalence and ecological niche parameters implemented in the ENMTools software; for this we quantified the degree of overlap and similarity between the niches using the equivalence (D) and similarity (I) parameters.
Key results – The resulting models show that species display areas of high suitability along the Mexican dry regions, as well as overlapping heterogeneous values. All models showed high AUC (Area Under the Curve) values (> 0.8). The D and I values between each pair of species showed low values of overlap.
Conclusions – Each species of the genus shows a fundamental niche distinct from their sister species. The genus thus offers an example of niche divergence among species, with each one adapting to different environmental pressures. Our results do not support the hypothesis of niche conservatism in the genus, suggesting that the species evolved in divergent environments.


Araújo M.B., Pearson R.G., Thuillery W., Erhard M. (2005) Validation of species-climate impact models under climate change. Global Change Biology 11(9): 1504–1513.

Bellier E., Certain G., Planque B., Monestiez P., Bretagnolle V. (2010) Modelling habitat selection at multiple scales with multivariate geostatistics: an application to seabirds in open sea. Oikos 119(6): 988–999.

Broennimann O., Fitzpatrick M.C., Pearman P.B., Petitpierre B., Pellissier L., Yoccoz N.G., Thuller W., Fortin M.J., Randin C., Zimmermann N.E., Graham C.H., Guisan A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21(4): 481–497.

Brown J.H., Lomolino M.V. (1998) Biogeography. 2nd Ed. Sunderland, Sinauer Associate.

Cervantes-Zamora Y., Cornejo-Olguín S.L., Lucero-Márquez R., Espinosa-Rodríguez J.M., Miranda-Víquez E., Pineda-Velásquez A. (1990) Clasificación de Regiones Naturales de México, IV. Atlas Nacional de México. Vol. II. Escala 1:4000000.

Chase J.M., Leibold M.A. (2003) Ecological niches: interspecific interactions. Chicago, The University of Chicago Press.

Cruz-Cárdenas G., López-Mata L., Ortiz-Solorio C.A., Villaseñor J.L., Ortiz E., Silva J.T., Estrada-Godoy F. (2014) Interpolation of Mexican soil properties at a scale of 1:1000000. Geoderma 213: 29–35.

Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151.

Elith J., Phillips S.J., Hastie T., Dudik M., Chee Y.E., Yates C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57.

Giovanelli J., Haddad C., Alexandrino J. (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biological Invasions 10(5): 585–590.

Graham C.H., Ron S.R., Santos J.C., Schneider C.J., Moritz C. (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in Dendrobatid frogs. Evolution 58(8): 1781–1793.

Grinnell J. (1917) The niche-relationships of the California thrasher. The Auk 34(4): 427–433.

Guisan A., Zimmermann N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135(2–3): 147–186.

Hutchinson G.E. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

Kambhampati S., Peterson A.T. (2007) Ecological niche conservation and differentiation in the wood-feeding cockroaches, Cryptocercus, in the United States. Biological Journal of Linnaean Society 90(3): 457–466.

Kearny M., Porter W. (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12(4): 334–350.

Leibold M.A., Geddes P. (2005) El concepto de nicho en las metacomunidades. Ecología Austral 15: 117–129.

Liu C., White M., Newell G. (2011) Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34(2): 232–243.

Maciel-Mata C.A., Manríquez-Morán N., Aguilar P.O., Sánchez-Rojas G. (2015) El área de distribución de las especies: revisión del concepto. Acta Universitaria 25(2): 3–19.

Maguire B. Jr. (1973) Niche response structure and the analytical potentials of its relationship to the habitat. The American Naturalist 107(954): 213–246.

Manzanilla-Quiñones U., Delgado-Valerio P., Hernández-Ramos J., Molina-Sánchez A., García Magaña J.J., Rocha Granados M. del C. (2019) Similaridad del nicho ecológico de Pinus montezumae y P. pseudostrobus (Pinaceae) en México: implicaciones para la selección de áreas productoras de semillas y de conservación. Acta Botanica Mexicana 126: e1398.

Martínez-Meyer E., Díaz-Porras D., Peterson A.T., Yáñez-Arenas C. (2013) Ecological niche structure and rangewide abundance patterns of species. Biology Letters 9(1): 20120637.

Oksanen J., Kindt R., Legendre P., O’Hara B., Simpson G. L., Solymos P., Henry M., Stevens H., Wagner H. (2008) Vegan: community ecology package, R package version 1.15–1. Available at [accessed 4 Aug. 2020].

Olsen J.S. (1979) Systematics of Zaluzania (Asteraceae: Heliantheae). Rhodora 81(82): 449–501.

Peterson A.T. (2011) Ecological niche conservatism: a time-structured review of evidence. Journal of Biogeography 38(5): 817–827.

Peterson A.T., Nyári A.S. (2007) Ecological niche conservatism and pleistocene refugia in the thrush-like mourner, Schiffornis sp., in the Neotropics. Evolution 62(1): 173–183.

Peterson A.T., Papes M., Eaton M. (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30(4): 550–560.

Peterson A.T., Soberón J., Sánchez-Cordero V. (1999) Conservatism of ecological niches in evolutionary time. Science 285(5431): 1265–1267.

Phillips S.J. (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31(2): 272–278.

Phillips S.J., Anderson R.P., Shapire R.E. (2006) Maximum entropy modeling of species distributions. Ecological Modelling 190(3–4): 231–259.

Phillips S.J., Dudík M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161–175.

Pliscoff P., Fuentes-Castillo T. (2011) Modelación de la distribución de especies and ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas and enfoques disponibles. Revista de Geografía Norte Grande 48: 61–79.

Pyron R.A., Burbrink F.T. (2009) Can the tropical conservatism hypothesis explain temperate species richness patterns? An inverse latitudinal biodiversity gradient in the New World snake tribe Lampropeltini. Global Ecology Biogeography 18(4): 406–415.

Pyron R.A., Costa G.C., Patten M.A., Burbrink F.T. (2015) Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews 90(4): 1248–1262.

R Development Core Team (2008) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at [accessed 4 Aug. 2020].

Ricklefs R.E. (2008) The evolution of senescence from a comparative perspective. Functional Ecology 22(3): 379–392.

Sánchez-Fernández D., Lobo J.M., Abellán P., Millán A. (2011) Environmental niche divergence between genetically distant lineages of an endangered water beetle. Biological Journal of the Linnean Society 103(4): 891–903.

Schoener T.W. (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49(4): 704–726.

Soberón J. (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10(12): 1115–1123.

Soberón J., Nakamura M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the United States of America 106(2): 19644–19650.

Soberón J., Peterson A.T. (2004) Biodiversity informatics: managing and applying primary biodiversity data. Philosophical Transactions of the Royal Society of London B 359(1444): 689–698.

Soberón J., Peterson A.T. (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1–10.

Suárez-Mota M.E., Villaseñor R.J.L., López-Mata L. (2015) Ecological niche similarity between congeneric Mexican plant species. Plant Ecology and Evolution 148(3): 318–328.

Thuiller W., Lafourcade B., Engler R., Araújo M.B. (2009) BIOMOD – A platform for ensemble forecasting of species distributions. Ecography 32(3): 369–373.

Tôrres N.M., De Marco P.Jr., Santos T., Silveira L., T. de Almeida J.A., Diniz-Filho J.A.F. (2012) Can species distribution modeling provide estimates of population densities? A case study with jaguars in the Neotropics. Diversity and Distributions 18(6): 615–627.

Turner B.L. (2012) Recension of the Mexican species of Zaluzania (Asteraceae: Heliantheae). Phytologia 94(3): 319–333.

VanDerWal J., Shoo L.P., Johnson C.N., Williams S.E. (2009) Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. The American Naturalist 174(2): 282–291.

Warren D.L., Glor R.E., Turelli M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62(11): 2868–2883.

Warren D.L., Glor R.E., Turelli M. (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3): 607–611.

Warren D.L., Beaumont L.J., Dinnage R., Baumgartner B. (2019) New methods for measuring ENM breadth and overlap in environmental space. Ecography 42(3): 444–446.

Webb C.O., Ackerly D.D., McPeek M.A., Donoghue M.J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.

Wiens J.J. (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58(1): 193–197.

Wiens J.J., Ackerly D.D., Allen A.P., Anacker B.L., Buckley L.B., Cornell H.V., Damschen E.I., Davies T.J., Grytnes J.A., Harrison S.P., Hawkins B.A., Holt R.D., McCain C.M., Stephens P.R. (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13(10): 1310–1324.

Wiens J.J., Graham C.H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519–539.

Yañez‐Arenas C., Martínez‐Meyer E., Mandujano S., Rojas‐Soto O. (2012) Modelling geographic patterns of population density of the white‐tailed deer in central Mexico by implementing ecological niche theory. Oikos 121(12): 2081–2089.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.