Reproductive and pollination biology of the Critically Endangered endemic Campanula vardariana in Western Anatolia (Turkey)
PDF

Keywords

Campanula vardariana
conservation
endemic
pollination
reproductive biology

How to Cite

Subaşı, Ümit and Güvensen, A. (2021) “Reproductive and pollination biology of the Critically Endangered endemic Campanula vardariana in Western Anatolia (Turkey)”, Plant Ecology and Evolution, 154(1), pp. 49-55. doi: 10.5091/plecevo.2021.1676.

Abstract

Background and aimsCampanula vardariana (Campanulaceae) is a critically endangered endemic chasmophyte with a single population situated in the west of Turkey. Very little is known about the reproductive biology of C. vardariana and more information is needed to develop a sound conservation strategy for this endemic species.
Material and methods – Floral traits such as flower morphology, nectar, and sugar concentration, as well as pollen viability and stigma receptivity were measured in different floral phases. We observed insect visitations to the flowers and identified pollinators. Additionally, we investigated the effect of cross and self-pollination on fruit and seed production.
Key results – The flowers of C. vardariana are protandrous. The length of the styles, which were 8.74 mm during the pollen loading phase, reached 11.35 mm during the pollen presentation phase. The visitor observations made on the C. vardariana flowers revealed 11 visitor species from 5 families: 5 Halictidae, 3 Apidae, and one species each from Megachilidae, Colletidae, and Bombyliidae. Lasioglossum spp. touched the anthers and stigma using several parts of their bodies and were significant pollinators of C. vardariana. Under natural conditions, the mean number of seeds per fruit was around 60 after cross pollination, while no fruits were formed when pollinators were excluded.
ConclusionCampanula vardariana is entirely dependent on pollinators for its reproductive success, and bees, especially Halictidae and to a lesser extent Apidae, play an important role. Campanula vardariana is restricted to cracks in calcareous rocks and its population is threatened by goat overgrazing and mining activities (quarry formation). Since seed production is abundant in this population, anthropogenic activities currently form the biggest threat to its existence.

https://doi.org/10.5091/plecevo.2021.1676
PDF

References

Alçıtepe E. & Yıldız K. 2010. Taxonomy of Campanula tomentosa Lam. and C. vardariana Bocquet from Turkey. Turkish Journal of Botany 34: 191–200. https://doi.org/10.3906/bot-0905-15

Bauer A.A., Clayton M.K. & Brunet J. 2017. Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. American Journal of Botany 104(5): 772–781. https://doi.org/10.3732/ajb.1600405

Blambert L., Mallet B., Humeau L. & Pailler T. 2016. Reproductive patterns, genetic diversity and inbreeding depression in two closely related Jumellea species with contrasting patterns of commonness and distribution. Annals of Botany 118(1): 93–103. https://doi.org/10.1093/aob/mcw014

Carlson J.E. 2007. Male-biased nectar production in a protandrous herb matches predictions of sexual selection theory. American Journal of Botany 94: 674–682. https://doi.org/10.3732/ajb.94.4.674

Carlson J.E. & Harms K.E. 2006. The evolution of gender-biased nectar production in hermaphroditic plants. The Botanical Review 72(2): 179–205. https://doi.org/10.1663/0006-8101(2006)72%5B179:TEOGNP%5D2.0.CO;2

Chen M., Zhao X.Y. & Zuo X.A. 2018. Pollinator activity and pollination success of Medicago sativa L. in a natural and a managed population. Ecology and Evolution 8(17): 9007–9016. https://doi.org/10.1002/ece3.4256

Conner J.K. & Rush S. 1996. Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia 105(4): 509–516. https://doi.org/10.1007/BF00330014

Cronquist A. 1988. The evolution and classification of flowering plants. The New York Botanical Garden, New York.

Dafni A. & Firmage D. 2000. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution 222: 113–132. https://doi.org/10.1007/BF00984098

Dafni A. & Motte-Maués M. 1998. A rapid and simple procedure to determine stigma receptivity. Sexual Plant Reproduction 11: 177–180. https://doi.org/10.1007/s004970050138

Damboldt J. 1978. Campanula L. In: Davis P.H. (ed.) Flora of Turkey and the East Aegean islands vol. 6: 2–64. Edinburgh University Press, Edinburgh.

D’Antraccoli M., RomaMarzio F., Benelli G., Canale A. & Peruzzi L. 2019. Dynamics of secondary pollen presentation in Campanula medium (Campanulaceae). Journal of Plant Research 132(2): 251–261. https://doi.org/10.1007/s10265-019-01090-1

Denisow B., Wrzesień M., Bożek M., Jeżak A. & Strzałkowska-Abramek M. 2014. Flowering, pollen characteristics and insect foraging on Campanula bononiensis (Campanulaceae), a protected species in Poland. Acta Agrobotanica 67(2): 13–22. https://doi.org/10.5586/aa.2014.021

Denisow B., Strzałkowska-Abramek M. & Wrzesień M. 2018. Nectar secretion and pollen production in protandrous flowers of Campanula patula L. (Campanulaceae). Acta Agrobotanica 71(1): 1734. https://doi.org/10.5586/aa.1734

Duan Y.W. & Liu J.Q. 2007. Pollinator shift and reproductive performance of the Qinghai-Tibetan Plateau endemic and endangered Swertia przewalskii (Gentianaceae). Plant Conservation and Biodiversity 16(6): 1839–1850. https://doi.org/10.1007/s10531-006-9076-z

Ekim T., Koyuncu M., Vural M., Duman H., Aytaç Z. & Adıgüzel N. 2000. Red data book of Turkish plants (Pteridophyta and Spermatophyta). TTKD-Van Yüzüncü Yıl University, Barışcan Ofset, Ankara.

Galetto L. & Bernardello G. 2005. Nectar. In: Dafni A., Kevan P. & Husband B.C. (eds) Practical pollination biology: 261–313. Enviroquest Ltd., Cambridge, Canada.

Gargano D., Gullo T. & Bernardo L. 2009. Do inefficient selfing and inbreeding depression challenge the persistence of the rare Dianthus guliae Janka (Caryophyllaceae)? Influence of reproductive traits on a plant’s proneness to extinction. Plant Species Biology 24(2): 69–76. https://doi.org/10.1111/j.1442-1984.2009.00239.x

Godefroid S., Piazza C., Rossi G., et al. 2011. How successful are plant species reintroductions? Biological Conservation 144: 672–682. https://doi.org/10.1016/j.biocon.2010.10.003

Güner A. 2000. Campanula L. In: Güner A., Özhatay N., Ekim T. & Başer K.H.C (eds) Flora of Turkey and the East Aegean islands (Suppl. 2) Vol. 11: 171–175. Edinburgh University Press, Edinburgh.

Harder L.D. & Barrett S.C.H. 1992. The energy cost of bee pollination for Pontederia cordata (Pontederiaceae). Functional Ecology 6(2): 226–233. https://doi.org/10.2307/2389759

Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9.

Heywood V.H. 1998. Flowering plants of the world. B.T. Batsford Ltd, London.

Inoue K. 1990. Dichogamy, sex allocation, and mating system of Campanula microdonta and C. punctata. Plant Species Biology 5: 197–203. https://doi.org/10.1111/j.1442-1984.1990.tb00179.x

Inoue K., Maki M. & Masuda M. 1995. Different responses of pollinating bees to size variation and sexual phases in flowers of Campanula. Ecological Research 10: 267–273. https://doi.org/10.1007/BF02347852

Kearns C., Inouye D.W. & Waser N.M. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83–112. https://doi.org/10.1146/annurev.ecolsys.29.1.83

Koski M.H., Ison J.L., Padilla A., Pham A.Q. & Galloway L.F. 2018. Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant-pollinator mutualism. Proceedings of the Royal Society B: Biological Sciences 285: 20180635. https://doi.org/10.1098/rspb.2018.0635

Lammers T.G. 2007. Campanulaceae Jussieu. In: Kadereit JW. & Jeffrey C. (eds) The families and genera of vascular plants VIII. Asterales. Springer, Berlin & Heidelberg.

Leins P. & Erbar C. 1990. On the mechanisms of secondary pollen presentation in the Campanulales-Asterales-complex. Botanica Acta 103(1): 87–92. https://doi.org/10.1111/j.1438-8677.1990.tb00131.x

Leins P. & Erbar C. 2010. Flower and fruit: morphology, ontogeny, phylogeny, function and ecology. Schweizerbart Science, Stuttgart.

Martinell M.C., Dotter S., Blanche C., Rovira A., Masso S. & Bosch M. 2010. Nocturnal pollination of the endemic Silene sennenii (Caryophyllaceae): an endangered mutualism? Plant Ecology 211: 203–218. https://doi.org/10.1007/s11258-010-9785-y

Mulugeta D., Maxwell B.D., Fay P.K. & Dyer W.D. 1994. Kochia (Kochia scoparia) pollen dispersion, viability and germination. Weed Science 42(4): 548–552. https://doi.org/10.1017/S004317450007692X

Nyman Y. 1992a. Pollination mechanisms in six Campanula species (Campanulaceae). Plant Systematics and Evolution 181: 97–108. https://doi.org/10.1007/BF00937589

Nyman Y. 1992b. Reproduction in Campanula afra: mating system and the role of the pollen-collecting hairs. Plant Systematics and Evolution 183: 33–41. https://doi.org/10.1007/BF00937733

Nyman Y. 1993. The pollen-collecting hairs of Campanula (Campanulaceae). II. Function and adaptive significance in relation to pollination. American Journal of Botany 80(12): 1437–1443. https://doi.org/10.2307/2445673

Ren H., Wang J., Liu H., et al. 2015. Conservation introduction resulted in similar reproductive success of Camellia changii compared with augmentation. Plant Ecology 217(2): 219–228. https://doi.org/10.1007/s11258-015-0515-3

Rodríguez-Oseguera A.G., Casas A., Herrerías-Diego Y. & Pérez-Negrón E. 2013. Effect of habitat disturbance on pollination biology of the columnar cactus Stenocereus quevedon is at landscape-level in central Mexico. Plant Biology 15: 573–582. https://doi.org/10.1111/j.1438-8677.2012.00657.x

Van Rossum F., Michez D., Van der Beeten I., Van de Vyver A., Robb L. & Raspé O. 2017. Preserving the only endemic vascular plant taxon in Belgium in a highly anthropogenic landscape. Plant Ecology and Evolution 150(1): 4–12. https://doi.org/10.5091/plecevo.2017.1238

Shetler S.G. 1979. Pollen-collecting hairs of Campanula (Campanulaceae). I. Historical review. Taxon 28(1–3): 205–215. https://doi.org/10.2307/1219578

Strzałkowska-Abramek M., Jachuła J., Wrzesień M., Bożek M., Dąbrowska A. & Denisow B. 2018. Nectar production in several Campanula species (Campanulaceae). Acta Scientiarum Polonorum Hortorum Cultus 17(3): 127–136. https://doi.org/10.24326/asphc.2018.3.13

Subaşı Ü. 2014. Conservation biology and genetic diversty of Campanula tomentosa Lam. and C. vardariana Bocquet. PhD thesis, University of Ege, Turkey.

Turkish State Meteorological Service 2021. Analysis, official statistics. Available from https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=AYDIN [accessed 8 Feb. 2021].

Vranken S., Brys R., Hoffmann M. & Jacquemyn H. 2014. Secondary pollen presentation and the temporal dynamics of stylar hair retraction and style elongation in Campanula trachelium (Campanulaceae). Plant Biology 16(3): 669–676. https://doi.org/10.1111/plb.12097

Walsh S.K., Penderb R.J., Junkerc R.R., Daehlerb C.C., Morden C.W. & Lorencea D.H. 2019. Pollination biology reveals challenges to restoring populations of Brighamia insignis (Campanulaceae), a critically endangered plant species from Hawai’i. Flora 259: 151448. https://doi.org/10.1016/j.flora.2019.151448

Wang B., Chen G., Li C. & Sun W. 2017. Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae), a plant species with extremely small populations (PSESP) endemic to South Yunnan of China. Plant Diversity 39(1): 52–59. https://doi.org/10.1016/j.pld.2017.01.001

Yıldırım H. 2018. Campanula leblebicii (Campanulaceae), a new chasmophyte species from western Turkey. Phytotaxa 376: 114–122. https://doi.org/10.11646/phytotaxa.376.2.5

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.