Epiphytic diatoms on herbarium material from the Central Forest phytogeographic region of the Democratic Republic of the Congo
cover image of Plant Ecology and Evolution 154(2)

Supplementary Files

Supplementary file 1
Supplementary file 2
Supplementary file 3
Supplementary file 4


aquatic plants
Congo Basin
D.R. Congo
water quality

How to Cite

Okito, A., Oleko, R., Madder, Z. and Cocquyt, C. (2021) “Epiphytic diatoms on herbarium material from the Central Forest phytogeographic region of the Democratic Republic of the Congo”, Plant Ecology and Evolution, 154(2), pp. 245-256. doi: 10.5091/plecevo.2021.1763.


Background and aims – Epiphytic diatoms are excellent bio-indicators of the present and past ecological condition of aquatic ecosystems. In order to reconstruct the diatom history and to evaluate its diversity in the Democratic Republic of the Congo, epiphytic diatoms were sampled from herbarium specimens of aquatic plants deposited at the National Herbarium of the Congo at Yangambi (YBI) and at the herbarium of Meise Botanic Garden (BR).
Material and methods – In YBI, nine specimens belonging to the Nymphaeaceae, three to the Ceratophyllaceae, and 12 to the Lentibulariaceae collected in the Central Forest phytogeographic region were sampled for diatom investigation. In addition, nine Nymphaea lotus specimens were sampled in BR. Semi-quantitative analyses were performed by light microscopy on permanent diatom slides.
Key results – Analyses of the epiphytic diatom communities on YBI and BR materials showed a large diversity of 132 species belonging to 44 genera. Taxa belonging to the genus Eunotia were relatively the most abundant in all studied samples followed by Frustulia saxonica and a Desmogonium sp. The diatom communities on Nymphaea were as varied as on Ceratophyllum, while on Utricularia, a significant lower diversity was observed. The Trophic Diatom Index (TDI) and Generic Diatom Index (GDI) showed that the water quality in the Central Forest phytogeographic region was overall good during the 20th century. They point to oligotrophic conditions for the running waters with a slight increase towards more mesotrophic conditions from the 1950s onwards. The only sample in the present study indicating mesotrophic condition was from a swamp.
Conclusions – The results on the epiphytic diatoms present on herbarium material can serve as a basis for sustainable management of aquatic ecosystems in D.R. Congo. In absence of an in-depth knowledge of the species and their ecological preferences, a genus-based TDI and IDG have proven to be valuable tools for water quality monitoring in tropical Africa.



Baars J.W.M. 1983. Autoecological investigations on freshwater diatoms. 1. Generation times of some species. Algological Studies 67(1): 11–18. https://doi.org/10.1127/algol_stud/67/1983/11

Bamps P. 1982. Flore d’Afrique Centrale (Zaïre–Rwanda–Burundi): répertoire des lieux de récolte. Jardin botanique national de Belgique, Meise.

Bellinger E.G. & Sigee D.C. 2010. Freshwater algae: identification and use as bioindicators. Wiley-Blackwell, Chichester. https://doi.org/10.1002/9780470689554

Bellinger B.J., Cocquyt C. & O’Reilly C.M. 2006. Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia 573: 75–87. https://doi.org/10.1007/s10750-006-0262-5

Cholnoky B.J. 1968. Die Ökologie der Diatomeen in Binnengewässern. J. Cramer, Lehre.

Cocquyt C. & De Wever A. 2002. Epiphytic diatom communities on herbarium material from Lake Naivasha and Lake Sonachi, East Rift Valley, Kenya. Belgian Journal of Botany 135(1): 38–49. https://www.jstor.org/stable/20794498

Cocquyt C. & Taylor J.C. 2015. New and interesting Surirella taxa (Surirellaceae, Bacillariophyta) from the Congo Basin (DR Congo). European Journal of Taxonomy 133: 1–15. https://doi.org/10.5852/ejt.2015.133

Cocquyt C., Lokele N.E., Tutu T.S. & Nshimba S.-M.H. 2019. Freshwater diatoms in the Democratic Republic of the Congo: a historical overview of the research and publications. Phytokeys 136: 107–125. https://doi.org/10.3897/phytokeys.136.47386

Compère P. 1998. Gomphonema zairense sp. nov. from the Tshopo waterfalls (Kisangani, Zaïre). Diatom Research 10: 31–37. https://doi.org/10.1080/0269249X.1995.9705328

DaluT., Bere T. & Froneman P.W. 2016. Assessment of water quality based on diatom indices in a small temperate river system, Kowie River, South Africa. Water SA 42: 183–193. https://doi.org/10.4314/wsa.v42i2.02

Denys L. 2003. Environmental changes in man-made coastal dune pools since 1820 as indicated by sedimentary and epiphytic diatom assemblages (Belgium). Aquatic Conservation: Marine and Freshwater Ecosystems 13(3): 191–211. https://doi.org//10.1002/aqc.581

Denys L. 2007. Water-chemistry transfer functions for epiphytic diatoms in standing freshwaters and a comparison with models based on littoral sediment assemblages (Flanders, Belgium). Journal of Paleolimnology 38 (1): 97–116. https://doi.org/10.1007/s10933-006-9064-z

Drachoussoff V., Focan A. & Hecq J. 1991. Le développement rural en Afrique Central 1908–1960/1962: synthèse et réflexions. Fondation Roi Baudouin, Bruxelles.

Gasse F. 1986. East African diatoms – Taxonomy, ecological distribution. Bibliotheca Diatomologica 11: 1–202.

Golama S.K.A. 1996. Bacillariophycées, desmidiées et euglénophycées de la région de Kisangani (Zaïre). Académie royale des Sciences d’Outre-Mer, Mémoires in-8°, Nouvelle Série 23 (3): 1–232.

Hill M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432. https://doi.org/10.2307/1934352

Kambale K. 2007. Analyse de la structure spatiale d’un paysage dans la région forestière de Yangambi (République Démocratique du Congo). Unpublished D.E.A. thesis, Université de Kisangani, D.R. Congo.

Kelly M.G., Adams C., Graves A.C., et al. 2001. The Trophic Diatom Index: a user’s manual. Revised edition. Research & Development Technical Report E2/TR2. Environment Agency, Bristol.

Keyombe J.L. & Waithaka E. 2017. Analysis of some aspect of water quality of Lake Naivasha. International Journal of Chemical and Life Sciences 6: 2001–2005. https://doi.org/10.21746/ijcls.2017.1.1

Kisuba P. 2019. Etude des diatomées épiphytiques et planctoniques de la rivière Tshopo à Kisangani. Unpublished bachelor thesis, Université de Kisangani, D.R. Congo.

Kucki M. 2009. Biological photonic crystals: diatoms. Dye functionalization of biological silica nanostructures. PhD thesis, University of Kassel, Germany.

Lavoie I., Morin S., Laderriere V. & Fortin C. 2018. Freshwater diatoms as indicators of combined long-term mining and urban stressors in Junction Creek (Ontario, Canada). Environments 5(30): 1–17. https://doi.org/10.3390/environments5020030

Lecointe C., Coste M. & Prygiel J. 1993. “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269–270: 509–513. https://doi.org/10.1007/BF00028048

Ndiritu G.G., Gichuki N.N. & Triest L. 2006. Distribution of epilithic diatoms in response to environmental conditions in an urban tropical stream, Central Kenya. Biodiversity and Conservation 15(10): 3267–3293. https://doi.org/10.1007/s10531-005-0600-3

R Development Core Team 2016. R: a language and environment for statistical computing. Available from https://www.r-project.org/ accessed 15 Mar. 2021].

Robyns W. 1948. Les territoires phytogéographiques du Congo belge et du Ruanda-Urundi. In: Atlas général du Congo belge et du Ruanda-Urundi. Institut royal colonial belge, Bruxelles, index 410-1.

Round F.E., Crawford R.M. & Mann D.G. 1990. Diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge.

Rumeau A. & Coste M. 1988. Initiation à la systématique des diatomées d’eau douce. Pour l’utilisation pratique d’un indice diatomique générique. Bulletin Français de la Pêche et de la Pisciculture 309: 169. https://doi.org/10.1051/kmae:1988009

Sawaiker R.U. & Rodrigues B.F. 2017. Biomonitoring of selected freshwater bodies using diatoms as ecological indicators. Journal of Ecosystem & Ecography 7: 234. https://doi.org/10.4172/2157-7625.1000234

Suroy M. 2013. Rôles du frustule des diatomées et de conditions nutritives de leur croissance sur l’export de carbone dans les océans. PhD thesis, Université d’Aix-Marseille et Institut Méditerranéen d’Océanologie, France.

Symoens J.-J. & van der Werff A. 1993. Les Diatomées des chutes de la Tshopo (Kisangani-Zaïre). Bulletin du Jardin botanique national de Belgique 62: 349–354. https://doi.org/10.2307/3668281

Symoens J.-J. & van der Werff A. 1996. Diatomées de quelques cours d’eau des environs de Yangambi (Cuvette central zaïroise, Région du Haut-Zaïre). Bulletin du Jardin botanique national de Belgique 65: 347–357. https://doi.org/10.2307/3668458

Taylor J.C. & Cocquyt C. 2016. Diatoms from the Congo and Zambezi Basins – Methodologies and identification of the genera. Abc Taxa 16: 1–353.

Taylor J.C., Cocquyt C. & Mayama S. 2016. New and interesting Eunotia (Bacillariophyta) from the Democratic Republic of the Congo, tropical central Africa. Plant Ecology and Evolution 149(3): 291–307. https://doi.org/10.5091/plecevo.2016.1219

Tremblay R. 2015. Élaboration d’une méthode basée sur les diatomées pour évaluer l’intégrité écologique des lacs tempérés du Québec (MILQ). PhD thesis, Université Laval, Canada.

Vogel A., Beier T. & Braun J. 2005. Does the process of drying submerged macrophytes affect community structure and composition of epiphytic diatoms? Hydrobiologia 541: 237–240. https://doi.org/10.1007/s10750-004-4669-6

Zanon V. 1938. Diatomee della regione del Kivu (Congo Belga). Commentationes Pontificia Academia Scientiarum 2 (14): 535–668.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.