Flower morphological differentiation and plant-pollinator interactions among sympatric Aframomum species (Zingiberaceae) with floral trumpet type in the tropical African rainforest
cover image of Plant Ecology and Evolution 154(3)

Supplementary Files

Supplementary file 1


bee pollination
floral morphology
floral type
pollinator sharing

How to Cite

Nzigou Doubindou, E. and Ley, A. (2021) “Flower morphological differentiation and plant-pollinator interactions among sympatric Aframomum species (Zingiberaceae) with floral trumpet type in the tropical African rainforest”, Plant Ecology and Evolution, 154(3), pp. 447-457. doi: 10.5091/plecevo.2021.1860.


Background and aims – Diversification in plant-pollinator interactions based on floral diversity is potentially a mechanism of coexistence in angiosperms. However, besides high floral diversity, some genera seemingly exhibit the same floral type in many of their species. This contradicts some expectations of competitive exclusion. We thus tested on a finer flower morphological scale whether five sympatric Aframomum species (61 spp., Zingiberaceae) in southeastern Gabon exhibiting the same general floral type (trumpet) were differentiated, and whether this resulted in different “pollinator niches”.
Material and methods – We carried out a detailed survey measuring 18 flower morphological parameters as well as nectar volume (μl) and sugar concentration (% Brix) on five flowers per species and locality. Furthermore, we observed inflorescence phenology and pollinator activity from 8 am to 4 pm for 12 to 50 hours per species and conducted pollinator exclusion experiments.
Key results – This study proves fine-scale flower morphological and resource differentiation within the trumpet floral type. Pollination-relevant parts of the flowers, however, remain constant across species. Our pollinator observations reveal the same broad bee pollinator spectrum for all observed simultaneously flowering sympatric species.
Conclusion – As we could not detect a pollinator-based differentiation in the studied sympatric Aframomum species we assume that species boundaries developed randomly by genetic drift during geographic isolation in the past. The trumpet floral type and its pollinator guild, however, were maintained due to similar selection pressures in comparable habitats during isolation and are potentially an advantage for increased pollinator attraction through co-flowering.



Armbruster W.S., Edwards M.E. & Debevec E.M. 1994. Floral character displacement generates assemblage structure of western Australian trigger plants (Stylidium). Ecology 75: 315–329. https://doi.org/10.2307/1939537

Auvray G., Harris D.J., Richardson J.E., Newman M.F. & Särkinen T.E. 2010. Phylogeny and dating of Aframomum (Zingiberaceae). In: Barfod A., Davis J.I., Petersen G. & Seberg O. (eds) Diversity, phylogeny, and evolution in the Monocotyledons: 287–305. Aarhus University Press, Aarhus.

Bastida J.M., Alcántara J.M., Rey P.J., Vargas P. & Herrera C.M. 2009. Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations. Plant Systematics and Evolution 284(3–4): 171–185. https://doi.org/10.1007/s00606-009-0243-z

Bates D., Maechler M. & Bolker B. 2011. Lme4: linear mixed-effects models using s4 classes. R package version 0. 999375-38. Available from http://cran.r-project.org/package=lme4 [accessed 11 Aug. 2021].

Bawa K.S. 1990. Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology & Systematics 21: 399–422. https://www.jstor.org/stable/2097031

Brisson J.D., Lajoie M., Jacques Allard J. & Jacobe-Remacle A. 1994. Les insectes pollinisateurs: des alliés à protéger. Fleurs Plantes Jardins 3: 1–143.

Claßen-Bockhoff R., Speck T., Tweraser E., Wester P., Thimm S. & Reith M. 2004. Staminal lever mechanism in Salvia. Organisms, Diversity & Evolution 4: 189–205. https://doi.org/10.1016/j.ode.2004.01.004

Couvreur T.L., Dauby G., Blach‐Overgaard A., et al. 2020. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biological Reviews 96(1): 16–51. https://doi.org/10.1111/brv.12644

Cruden R.W. 1976. Intraspecific variation in pollen-ovule ratios and nectar secretion – Preliminary evidence of ecotypic adaptation. Annals of the Missouri Botanical Garden 63(2): 277–289. https://doi.org/10.2307/2395306

Dhetchuvi J.B. 1996. Taxonomie et phytogéographie des Marantaceae et Zingiberaceae d’Afrique centrale (Gabon, Congo, Zaïre, Rwanda & Burundi). PhD thesis, Université Libre de Bruxelles, Belgium.

Eardley C., Kuhlmann M. & Pauly A. 2010. The bee genera and subgenera of sub-Saharan Africa. ABC Taxa 7: 1–138.

Farkas Á., Molnár R., Morschhauser T. & Hahn I. 2012. Variation in nectar volume and sugar concentration of Allium ursinum L. ssp. ucrainicum in three habitats. The Scientific World Journal 2012: 138579. https://doi.org/10.1100/2012/138579

Fohouo F.N.T., Djonwangwe D., Messi J. & Brückner D. 2010. Activité de butinage et de pollinisation de Apis mellifera andonsonii Latreille (Hymenoptera: Apidae) sur les fleurs de Helianthus annus (Asteraceae) à Ngaoundere (Cameroun). Cameroon Journal of Experimental Biology 5(1): 1–9. https://doi.org/10.4314/cajeb.v5i1.44442

Giannini T.C., Garibaldi L.A., Acosta A.L., et al. 2015. Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS ONE 10(9): e0137198. https://doi.org/10.1371/journal.pone.0137198

Givnish T.J. 2010. Ecology of plant speciation. Taxon 59(5): 1326–1366. https://doi.org/10.1002/tax.595003

Gottsberger G. 1989. Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Plant Systematics and Evolution 167(3–4): 165–187. https://doi.org/10.1007/bf00936404

Gottsberger G., Arnold T. & Linskens H.F. 1989. Intraspecific variation in the amino acid content of floral nectar. Plant Biology 102(2): 141–144. https://doi.org/10.1111/j.1438-8677.1989.tb00082.x

Grant V. 1994. Modes and origins of mechanical and ethological isolation in angiosperms. Proceedings of the National Academy of Sciences of the United States of America 91(1): 3–10. https://doi.org/10.1073/pnas.91.1.3

Grey-Wilson C. 1980. Impatiens of Africa. A.A. Balkema, Rotterdam.

Hagen M. & Kraemer M. 2010. Agricultural surroundings support flower-visitor networks in an afrotropical rainforest. Biological Conservation 143(7): 1654–1663. https://doi.org/10.1016/j.biocon.2010.03.036

Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): art. 4. Available from http://palaeo-electronica.org/2001_1/past/issue1_01.htm [accessed 11 Aug. 2021].

Harris D.J., Poulsen A.D., Frimodt-Møller C., Preston J. & Cronk Q.C.B. 2000. Rapid radiation in Aframomum (Zingiberaceae): evidence from nuclear ribosomal DNA internal transcribed spacer (ITS) sequences. Edinburgh Journal of Botany 57(3): 377–395. https://doi.org/10.1017/s0960428600000378

Harris D.J. & Wortley A.H. 2018. Monograph of Aframomum (Zingiberaceae). Systematic Botany Monographs 104: 1–204.

Herrera C.M., Pérez R. & Alonso C. 2006. Extreme intraplant variation in nectar sugar composition in an insect-pollinated perennial herb. American Journal of Botany 93(4): 575–581. https://doi.org/10.3732/ajb.93.4.575

Horvitz C.C. & Schemske D.W. 1988. A test of the pollinator limitation hypothesis for a neotropical herb. Ecology 69(1): 200–206. https://doi.org/10.2307/1943175

Johnson S.D., Linder H.P. & Steiner K.E. 1998. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). American Journal of Botany 85(3): 402–411. https://doi.org/10.2307/2446333

Kim W., Gilet T. & Bush J.W.M. 2011. Optimal concentrations in nectar feeding. Proceedings of the National Academy of Sciences of the United States of America 108(40): 16618–16621. https://doi.org/10.1073/pnas.1108642108

Koechlin J. 1964. Zingibéracées. Flore du Gabon 9: 15–88.

Lekane Tsobgou D. 2009. L’impact socioéconomique et spatial de la microfinance sur le développement rural au Cameroun: le cas des mutuelles communautaires de croissance (mc2). PhD thesis, Université de Yaoundé 1, Cameroun.

Ley A.C. 2008. Evolutionary tendencies in African Marantaceae: evidence from floral morphology, ecology and phylogeny. PhD thesis, Johannes Gutenberg University, Germany. https://doi.org/10.25358/openscience-2617

Ley A.C. & Claßen-Bockhoff R. 2009. Pollination syndromes in African Marantaceae. Annals of Botany 104: 41–56. https://doi.org/10.1093/aob/mcp106

Ley A.C. & Claßen-Bockhoff R. 2011. Evolution in African Marantaceae - Evidence from phylogenetic, ecological and morphological studies. Systematic Botany 36(2): 277–290. https://doi.org/10.1600/036364411x569480

Ley A.C. & Claßen-Bockhoff R. 2013. Breeding system and fruit set in African Marantaceae. Flora - Morphology, Distribution, Functional Ecology of Plants 208(8): 532–537. https://doi.org/10.1016/j.flora.2013.07.011

Ley A.C. & Harris D.J. 2014. Flower morphological diversity in Aframomum (Zingiberaceae) from Africa – the importance of distinct floral types with presumably specific pollinator associations, differential habitat adaptations & allopatry in speciation and species maintenance. Plant Ecology and Evolution 147(1): 33–48. https://doi.org/10.5091/plecevo.2014.824

Lock J.M., Hall J.B. & Abbiw D.K. 1977. The cultivation of melegueta pepper (Aframomum melegueta) in Ghana. Economic Botany 31(3): 321–330. https://doi.org/10.1007/bf02866884

Lunau K. 2004. Adaptive radiation and coevolution—pollination biology case studies. Organisms Diversity & Evolution 4(3): 207–224. https://doi.org/10.1016/j.ode.2004.02.002

Macior L.W. 1971. Coevolution of plants and animals - Systematic insights from plant-insect interactions. Taxon 20: 17–28. https://doi.org/10.2307/1218530

Maley J. 1996. The African rain forest – main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences 104: 31–73. https://doi.org/10.1017/S0269727000006114

Moeller D.A. 2004. Facilitative interactions among plants via shared pollinators. Ecology 85(12): 3289–3301. https://doi.org/10.1890/03-0810

Morales C.L. & Traveset A. 2008. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Critical Reviews in Plant Sciences 27(4): 221–238. https://doi.org/10.1080/07352680802205631

Moreira-Hernández J.I. & Muchhala N. 2019. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annual Review of Ecology, Evolution, and Systematics 50: 191–217. https://doi.org/10.1146/annurev-ecolsys-110218-024804

Ollerton J. & Watts S. 2000. Phenotype space and floral typology: towards and objective assessment of pollination syndromes. In: Scandinavian Association for Pollination Ecology honours Knut Faegri. Det Norske Videnskaps-Akademi. I. Matematisk Naturvidenskapelige Klasse, Skrifter, Ny Serie 39: 149–159.

Perret M., Chautems A., Spichiger R., Peixoto M. & Savolainen V. 2001. Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Annals of Botany 87(2): 267–273. https://doi.org/10.1006/anbo.2000.1331

R Core Team 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from https://www.R-project.org [accessed 20 Jul. 2021].

Ricklefs R.E. & Renner S.S. 1994. Species richness within families of flowering plants. Evolution 48(5): 1619–1636. https://doi.org/10.1111/j.1558-5646.1994.tb02200.x

Roubik D.W., Yanega D., Aluja S.M., Buchmann S.L. & Inouye D.W. 1995. On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae). Apidologie 26: 197–211. https://doi.org/10.1051/apido:19950303

Schemske D.W. 1981. Floral convergence and pollinator sharing in two bee pollinated tropical herbs. Ecology 62(4): 946–954. https://doi.org/10.2307/1936993

Schüepp C., Rittiner S. & Entling M.H. 2012. High bee and wasp diversity in a heterogeneous tropical farming system compared to protected forest. PLoS ONE 7(12): e52109. https://doi.org/10.1371/journal.pone.0052109

Silva F.A., Chatt E.C., Mahalim S.-N., et al. 2020. Metabolomic profiling of Nicotiana spp. nectars indicate that pollinator feeding preference is a stronger determinant than plant phylogenetics in shaping nectar diversity. Metabolites 10(5): 214. https://doi.org/10.3390/metabo10050214

Specht C.D., Kress W.J., Stevenson D.W. & De Salle R. 2001. A molecular phylogeny of Costaceae (Zingiberales). Molecular Phylogenetics and Evolution 21(3): 333–345. https://doi.org/10.1006/mpev.2002.1144

Stanley D.A. & Stout J.C. 2014. Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: implications for wild plant pollination. Plant Ecology 215(3): 315–325. https://doi.org/10.1007/s11258-014-0301-7

Sutherland S. & Delph L.F. 1984. On the importance of male fitness in plants: patterns of fruit-set. Evolution (65): 1093–1104. https://doi.org/10.2307/1938317

Sutherland S. 1986. Patterns of fruit-set: what controls fruit-flower ratios in plants? Evolution 40(1): 117–128. https://doi.org/10.1111/j.1558-5646.1986.tb05723.x

Tachiki Y., Iwasa Y. & Satake A. 2010. Pollinator coupling can induce synchronized flowering in different plant species. Journal of Theoretical Biology 267: 153–163. https://doi.org/10.1016/j.jtbi.2010.08.023

Tomlinson K.W., Poorter L., Sterck F.J., et al. 2013. Leaf adaptations of evergreen and deciduous trees of semi‐arid and humid savannas on three continents. Journal of Ecology 101(2): 430–440. https://doi.org/10.1111/1365-2745.12056

Tukey J.W. 1957. On the comparative anatomy of transformations. The Annals of Mathematical Statistics. 28: 602–632. https://www.jstor.org/stable/2237223

Urru I., Stoekl J., Linz J., Kruegel T., Stensmyr M.C. & Hansson B.S. 2010. Pollination strategies in Cretan Arum lilies. Biological Journal of the Linnean Society 101(4): 991–1001. https://doi.org/10.1111/j.1095-8312.2010.01537.x

Viana B.F., Boscolo D., Mariano Neto E., et al. 2012. How well do we understand landscape effects on pollinators and pollination services? Journal of Pollination Ecology 7: 31–40. https://doi.org/10.26786/1920-7603(2012)2

Walters G. 2012. Customary fire regimes and vegetation structure in Gabon’s Bateke plateaux. Human Ecology 40(6): 943–955. https://doi.org/10.1007/s10745-012-9536-x

Wang G., Cannon C.H. & Chen J. 2016. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proceedings of the Royal Society B 283: 20152963. https://doi.org/10.1098/rspb.2015.2963

Wester P. & Claßen-Bockhoff R. 2007. Floral diversity and pollen transfer mechanisms in bird-pollinated Salvia species. Annals of Botany 100(2): 401–421. https://doi.org/10.1093/aob/mcm036

Zajácz E., Zaják Á., Szalai-Mátray E. & Szalai T. 2006. Nectar production of some sunflower hybrids. Journal of Apicultural Science 50(2): 7–11.

Zakaria C.A. 2013. Études chimiques et biologiques d’Aframomum sceptrum (Zingiberaceae) et de la curcumine. PhD thesis, Université Paris-Sud, France.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.